
Eine WebAssembly Container
Runtime für Serverless Edge

Computing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Philipp Gackstatter, BSc.
Matrikelnummer 11846040

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar
Mitwirkung: Univ.Ass. Pantelis Frangoudis, PhD

Wien, 18. Mai 2021
Philipp Gackstatter Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A WebAssembly Container
Runtime for Serverless Edge

Computing

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Philipp Gackstatter, BSc.
Registration Number 11846040

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar
Assistance: Univ.Ass. Pantelis Frangoudis, PhD

Vienna, 18th May, 2021

Philipp Gackstatter Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der Arbeit

Philipp Gackstatter, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschlieÿlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 18. Mai 2021
Philipp Gackstatter

v

Acknowledgements

I want to thank Prof. Schahram Dustdar and, in particular, Pantelis Frangoudis, PhD. for being
open to the idea of this work and enabling me to write my thesis in a topic I am excited about.
Thank you for your guidance and valuable feedback over the course of this work!

I am also grateful to the Rust language community as a whole, whose talks, books and blogs
have gotten me into systems programming, which turned out to be a passion of mine. Without
this initial spark, this thesis would not have happened. Finally, thank you to Markus Raab who
facilitated my Rust journey at TU Wien and beyond, thereby laying a cornerstone of this work,
too.

vii

Kurzfassung

Serverless Computing ist durch die Abstraktion des Infrastrukturmanagements ein beliebter
Teil des Cloud Computings geworden. Es ermöglicht automatisch skalierende Funktionen zu
schreiben, wobei nur die verbrauchte Rechenzeit in Rechnung gestellt wird. Dieses Modell
ist daher ideal um Fluten von Anfragen zu verarbeiten, wie sie etwa aus dem Internet der
Dinge kommen. Allerdings können selbst die räumlich nahen Edge Computer latenzsensible
Anwendungsfälle aufgrund eines signifikanten Performanceproblems nicht bedienen.

Beim ersten Aufruf einer Funktion muss dessen Ausführungsumgebung gestartet werden –
üblicherweise ein Docker Container. Dieser Kaltstart benötigt mehrere hundert Millisekun-
den bis hin zu mehreren Sekunden bei parallelen Anfragen, was Serverless in Kombination
mit Docker für diese Anwendungsfälle ungeeignet macht. Zudem erhöht der Betrieb dieser
Plattformen auf Edge Computern mit begrenzten Ressourcen die Kaltstartzeit noch weiter.

Um dieses Problem zu beheben verfolgen wir einen radikalen Ansatz, bei dem Docker, die
de-facto Standard Serverless Runtime, gänzlich durch eine leichtgewichtigere Technologie
ersetzt wird. Jede Alternative muss eine ähnliche Sicherheit, Sprachunabhängigkeit und Per-
formance bieten. WebAssembly ist eine aufkommende Technologie die diese Eigenschaften
bereitzuhalten scheint. Daher untersuchen wir in dieser Arbeit die Eignung von WebAssembly
in einer Serverless Container Runtime mit einem Fokus auf Edge Computing. Dazu modifizieren
wir das Serverless Framework Apache OpenWhisk und wählen drei WebAssembly Runtimes
aus, um unsere Container Runtime darauf aufzubauen. Insbesondere wird dabei dessen Design
diskutiert, mit dem schnelle Kaltstarts bei hoher Performance erzielt werden können.

Wir vergleichen OpenWhisk in der Dockervariante mit den drei WebAssembly Container Run-
times im Hinblick auf Kaltstartzeit, Performance und Speicherverbrauch in umfangreichen
Experimenten. Auf einem Raspberry Pi, einem typischen low-end Edge Computer, erreichen
unsere WebAssembly Container Runtimes einen 99.5% schnelleren Kaltstart als Docker und
einen 94% schnelleren Start auf Serverhardware. Docker’s Performance wird stark von der Kalt-
startzeit beeinträchtigt, während der Durchsatz von WebAssembly Containern nicht spürbar
davon beeinflusst wird. In einem Lasttest mit CPU- und I/O-gebundenen Funktionen erreichen
unsere Container Runtimes das 2,4- bis 4,2-fache des Durchsatzes von Docker. Insgesamt zeigt
sich WebAssembly als geeignete Alternative für Serverless Plattformen durch den leichtge-
wichtigen Isolationsmechanismus, der schnelle Starts ermöglicht, sowie Unterstützung für
vorzeitige Kompilierung zu schnellem nativen Maschinencode. Unser Ansatz ist daher ein
aussichtsreicher Schritt hin zu latenzarmem Serverless Edge Computing.

ix

Abstract

Serverless computing has become a popular part of the cloud computing model, thanks to
abstracting away infrastructure management. It enables any developer to write functions that
auto-scale, while only paying for the used compute time. This model is ideal for handling the
unpredictable and bursty workloads in the Internet of Things. However, even the physically
close edge computers cannot facilitate low latency use cases due to a significant performance
issue.

The first invocation of a function requires creating its execution environment – typically a
Docker container. This cold start can take hundreds of milliseconds or even multiple seconds
under concurrent requests, making serverless with Docker unsuitable for these use cases.
Running these platforms on edge devices with limited CPU power and memory available,
increases cold start latencies even further.

To alleviate this issue, we follow a radical approach and replace Docker, the de-facto standard
runtime for serverless computing, with a lighter-weight technology. However, any alternative
must offer similar levels of security, language-agnosticism and high performance. A nascent
technology, which claims to have these properties, is a target format called WebAssembly. In
this work, we examine WebAssembly’s suitability for use in a serverless container runtime
for Apache OpenWhisk, a serverless framework, with a focus on edge computing. We choose
three WebAssembly runtimes to build our container runtime on top of and present its design
to achieve fast cold starts while retaining a high performance.

We compare the Docker-based OpenWhisk with the three WebAssembly container runtimes in
terms of cold start time, execution performance and memory usage via extensive experiments
in a testbed. On a Raspberry Pi, a typical low-end edge computing device, we find our Web-
Assembly container runtimes to achieve 99.5% faster cold starts than Docker, and 94% faster
starts on server-grade hardware. Docker’s execution performance is strongly linked to the cold
start time, while the throughput of WebAssembly containers is not noticeably susceptible to
cold starts. In a mixed CPU- and I/O-bound workload, our container runtimes achieve at least
2.4 and up to 4.2 times the throughput of Docker. Overall, we find WebAssembly to be very
suitable for use in serverless platforms due to its lightweight isolation mechanism, enabling fast
startups, as well as support for ahead-of-time compilation to fast, native code. Our approach is
thus a promising step towards low-latency serverless edge computing.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Work . 3

1.2.1 Terminology . 4
1.2.2 Contributions . 5

1.3 Structure of the Work . 5

2 Background 7
2.1 Serverless Computing . 7

2.1.1 Function-as-a-Service . 7
2.1.2 Serverless Architecture . 8
2.1.3 Cold Start . 9
2.1.4 Serverless Edge Computing . 10
2.1.5 Serverless Workload . 11

2.2 WebAssembly . 13
2.2.1 Performance . 14
2.2.2 Security . 14
2.2.3 System Interface . 16
2.2.4 Execution . 17

3 Design 19
3.1 Core Approach . 19
3.2 Requirements . 20

3.2.1 Apache OpenWhisk . 21
3.3 WebAssembly Runtimes . 21

3.3.1 Wasmtime . 21
3.3.2 Lucet . 22
3.3.3 Wasmer . 22

xiii

3.3.4 WASM3 . 23
3.3.5 WebAssembly Micro Runtime . 23

3.4 WebAssembly in OpenWhisk . 24
3.4.1 OpenWhisk’s Anatomy . 24
3.4.2 OpenWhisk on Kubernetes . 25
3.4.3 Executing WebAssembly with OpenWhisk 26
3.4.4 Krustlet: The WebAssembly Kubelet 27
3.4.5 An OpenWhisk-WebAssembly Executor 28

3.5 Executor Implementation . 30
3.5.1 Fast Cold Starts . 32
3.5.2 Warm Starts . 33
3.5.3 The WasmRuntime Abstraction . 34
3.5.4 Enabling Concurrency . 42
3.5.5 Implementation Alternatives . 45

4 Evaluation 49
4.1 Methodology . 49

4.1.1 Goals . 49
4.1.2 Workload Types . 49
4.1.3 Hardware Classes . 52
4.1.4 Setup . 52
4.1.5 Deployment . 55

4.2 Cold Start . 55
4.3 Throughput . 58

4.3.1 Mixed Workload . 58
4.3.2 I/O-bound Workload . 61
4.3.3 CPU-bound Workload . 62
4.3.4 Realistic Workload . 65

4.4 Resource Usage . 68

5 Related Work 73
5.1 Incremental Approaches . 73

5.1.1 Pre-Warming . 73
5.1.2 Pre-Creation . 74
5.1.3 Prediction . 75

5.2 WebAssembly in Serverless . 75
5.2.1 Execution in node.js . 75
5.2.2 Cloudflare Workers . 76
5.2.3 Fastly’s Lucet . 77
5.2.4 Faasm . 77

5.3 WebAssembly in Smart Contracts . 78

6 Conclusion 81
6.1 Research Questions . 81

6.2 Open Challenges & Future Work . 84

List of Figures 87

List of Tables 91

References 95

Online Resources 99

CHAPTER 1
Introduction

1.1 · Motivation

With the growing number of devices at the network edge, the limitations of today’s cloud
computing model have become apparent. Low latency and data-intensive use cases cannot
be facilitated by the cloud, due to its physical distance and the sheer amount of data that
these edge devices would have to transmit – over a very finite amount of bandwidth [Asl+21].
Hence, application scenarios at the edge involving data analytics [Nas+17], machine learning
[Rau+19] or augmented reality [BF19], require moving away from the cloud-centric model.
The edge computing paradigm has emerged as a solution to address these issues. Applying the
traditional cloud model to the edge, however, does not promise to be an effective solution. Due
to the limited resources available, allocating resources like virtual machines or even containers
in a fixed manner may prove to be too inefficient [BF19]. Instead, a model with a higher
resource elasticity is required; one that can scale up and down fast, thereby efficiently using
the available resources. One approach that implements this is serverless computing – most
commonly in the form of Function-as-a-Service (FaaS). In this computing model, developers can
execute functions without having to specify how the necessary infrastructure is set up. Instead,
the allocation of computing resources is automated, which enables a higher elasticity. This
property is well-suited to the resource- and energy-constrained environments of edge devices,
given that overprovisioning is even less desirable than in the cloud model [Asl+21]. Because
resources can be utilized whenever required, this model is ideal for event-driven architectures,
such as those typically found in Internet of Things scenarios, where the time at which devices
require computing resources is unpredictable, e.g. when a sensor receives input or a user presses
a button. Therefore, it may happen that at times, a serverless framework receives only a few
requests, while at others, it needs to process a large amount of requests, simultaneously. To
enable this elasticity, one user’s function might run on the same host as that of another user.
To isolate these instances, serverless frameworks make use of OS-level virtualization through
containers – usually of the Docker flavor. Next to security, it also enables packaging language

1

1. Introduction

runtimes, so developers can write functions in a language-agnostic manner, and statelessness
due to cheap create and destroy operations. However, cheap is relative. Historically, containers
have been compared to the heavier-weight virtual machines, where the creation is indeed
much more time intensive. However, on the time scale of serverless, where an incoming request
ought to be finished as soon as possible, but the container needs to be created first, it turns out
to be not so cheap after all. Not pre-allocating resources to avoid overprovisioning is the point
of serverless, but that presupposes that the allocation itself is timely.

When a function is first executed, its container must be started – referred to as the cold start.
This can introduce a latency of a few hundred milliseconds to multiple seconds [Man+18;
Wan+18]. Consider that on average, 50% of serverless functions execute for less than one
second [Sha+20]. Thus, the latency observed by the end user can often be double of what
the function itself is responsible for. This infrastructure-induced latency is unacceptable for
time-sensitive applications, and thereby most user-facing ones. To make matters worse, these
cold start latencies increase under concurrent workloads – precisely those supposed to be
handled well by serverless platforms [Moh+19]. Containers were not designed for this use case
and the startup time they require is inherent to how they achieve isolation. This problem has
been partially addressed by keeping containers warm in-between requests; that is, only the
first of potentially many invocations incur this cost. However, this is a form of overprovisioning
– though a less severe one – and therefore opposed to the serverless promise of being able to
scale to zero. Evidently, this is already a significant problem for the cloud, so applying this
approach at the resource-constrained edge, like Amazon Web Services’ (AWS) Greengrass1

would only exacerbate the issue. As Nastic and Dustdar point out, the »architectural and
design assumptions behind such approaches need to be reevaluated« [ND18]. Consequently,
to rectify this problem, a new approach is needed.

At the heart of the problem lies the container runtime, due to its expensive startup procedure.
We believe OS-level virtualization to be unsuitable for serverless edge computing and thus
follow a radical approach by replacing the container runtime entirely. This new runtime needs
to provide similar functionality and guarantees, while offering a more efficient cold start. One
nascent technology that could facilitate this is called WebAssembly (Wasm). WebAssembly is a
portable, binary instruction format for memory-safe, sandboxed execution in a virtual machine
[W3C20]. Its portability means that the compiled WebAssembly modules can be executed
wherever a runtime exists. Thus, a function can easily be moved between architecturally
heterogeneous devices. Its sandboxing features enable Wasm to be used for the execution of
arbitrary, user-supplied code without compromising the security of a multi-tenant system.
WebAssembly can be compiled with different strategies, some of them reaching near-native
speeds. This is important since a running Docker container can execute at native speeds
or as fast as the language runtime allows for. In the process of alleviating the cold start,
we have to avoid suffering a loss in execution performance due to an expensive compilation
strategy or runtime checks. Finally, these modules can be created and destroyed in a matter of
microseconds. The cloud provider fastly has begun offering execution of Wasm code through
the use of their custom lucet WebAssembly runtime.

1https://aws.amazon.com/greengrass/

2

https://aws.amazon.com/greengrass/

1.2. Aim of the Work

In its announcement, they write:

»Lucet can instantiate WebAssembly modules in under 50 microseconds, with just
a few kilobytes of memory overhead. By comparison, Chromium’s V8 engine takes
about 5 milliseconds, and tens of megabytes of memory overhead, to instantiate
JavaScript or WebAssembly programs« [fas19].

This gives us a first indication that WebAssembly runtimes does not suffer from a cold start
on the same order of magnitude as Docker’s. In summary, Wasm allows for secure, portable
and fast execution. With these properties it may be a good replacement for containers on edge
computers. Solomon Hykes, one of the founders of Docker, even commented:

»If WASM+WASI existed in 2008, we wouldn’t have needed to created Docker.
That’s how important it is. Webassembly on the server is the future of computing«
[Hyk19].

Hence, WebAssembly’s potential for serverless computing shall be examined more closely in
this work.

1.2 · Aim of the Work

The goal of this work is to evaluate the viability of WebAssembly in serverless computing in
the context of edge computing, while also attempting to accommodate the cloud. We assess
that potential by gathering requirements from the current approaches to serverless, as well
as those from edge computing, which supersede the current ones. Based on those, we study
several WebAssembly runtimes for their suitability towards our goals. We then discuss two
approaches, which would enable WebAssembly to be used in serverless, and implement one of
them. Given that WebAssembly runtimes themselves are geared towards different use cases,
we leverage three of them and aim to find the one most suitable for our needs. Ultimately, the
work is guided by and seeks to answer the following research questions.

RQ1: By how much can WebAssembly runtimes alleviate the cold start latency?

The first research question examines whether our core hypothesis holds. That is, can our
serverless container runtime provision WebAssembly containers more quickly than the tradi-
tional Docker runtime can? If so, how much faster, and with what optimizations in place? We
evaluate that by measuring the cold start latency for both approaches on an edge as well as a
server-grade device.

3

1. Introduction

RQ2: How do the performance characteristics of the WebAssembly and Docker
container runtimes differ?

The goal of the second question is to measure the performance of both container technologies
at runtime. More specifically, at what speed can certain workload types be executed? We run
CPU- and I/O-bound functions in isolation, to test performance in these specific aspects, but
also mixed workloads to test scenarios closer to reality. Moreover, we take the cold start into
account in some test runs while isolating it in others to give a holistic picture and examine the
effect the cold start has on the overall performance.

RQ3: What are the resource costs for keeping containers warm in both container
runtimes?

The third question explores, what the cost of not scaling to zero is, i.e. when containers are kept
warm. This is reflected in the memory usage of such containers, which are being kept ready for
potential incoming requests. That ties in with the cost of cold starts. If cold starts are cheap,
we can reduce or eliminate the time that containers need to be kept warm. Orthogonally, if
keeping containers warm is cheaper with WebAssembly than Docker, keeping more of them
around is feasible to improve performance overall. Both measurements let us explore the space
of configurations this keep-alive optimization has and compare it to that of Docker.

RQ4: Which WebAssembly runtime is the most suitable for use on edge devices?

The fourth question is directed at finding theWebAssembly runtime best suited for the execution
of modules on low-energy and resource-constrained edge devices. We use a Raspberry Pi single-
board computer as our example edge device to run our serverless environment on and evaluate
the different runtimes from there.

RQ5: How suitable is WebAssembly for serverless execution?

The final question aims to make a conclusion about the suitability of WebAssembly itself, based
on our evaluation of multiple runtimes, but not necessarily limited to it. All of the preceding
measurements as well as our experiences in the design phase are amalgamated to produce an
answer to this question.

1.2.1 Terminology

Since runtime is a very overloaded term in our context, we may also refer to container runtimes
as executors, i.e. the programs responsible for managing containers. Runtime also appears as
the word for language runtimes, for example, node.js for JavaScript. WebAssembly runtimes
are virtual machines executing WebAssembly code, which is called a WebAssembly module. A

4

1.3. Structure of the Work

module can be instantiated to produce an executable instance. A WebAssembly container is a
more generic term encompassing both a WebAssembly module and an instance.

1.2.2 Contributions

The first contribution is a review of the literature, to provide a background for serverless
computing in the cloud and at the edge as well as a comprehensive overview of WebAssembly
and its salient properties, which make it a viable alternative to Docker for our use case. That
includes an assessment of the current research space as to what constitutes serverless use cases
and typical workloads, in order to facilitate a realistic evaluation of our system.

The major contribution revolves around modifying an open-source serverless framework,
Apache OpenWhisk, to enable the use of such a new container runtime. We explore two
auspicious options for bringing WebAssembly support to OpenWhisk and settle for one. At
the heart of the work is the implementation of the container runtime using three different
WebAssembly runtimes. We discuss the properties the executor needs to fulfill and the design
that aims to implement them. Subsequently, we evaluate the three resulting executors against
the baseline OpenWhisk vanilla for the cold start latency, the performance under different
workload types as well as memory usage for warm containers. Our system shows reductions
in cold start latencies of 99.5% on a Raspberry Pi and around 94% on a server machine. The
throughput in a realistic workload is up to 4.2× more on a server machine, and 3× more on
a Raspberry Pi. Finally, we explore alternative approaches to alleviate the cold start problem
and conclude with answers to the research questions we posed. The source code for our
contributions can be found on GitHub2.

1.3 · Structure of the Work

In Chapter 2 we expand on the introduced topics, to establish a common background for the
remainder of the work, particularly the serverless workload and WebAssembly.

In Chapter 3 we discuss approaches for potential solutions to our problem and discuss the
implementation of our proposed solution. We settle on one approach and implement it, work
out the differences between the WebAssembly runtimes we leverage, and discuss trade-offs
along the way.

In Chapter 4 we evaluate the system for the cold start latency, different workload types and
memory usage in warm containers.

In Chapter 5 we examine the current research for other approaches that alleviate the cold start
problem and discuss the differences to our approach.

In Chapter 6 we summarize the results of our work by answering our research questions and
give an overview of open challenges and potential future work.

2https://github.com/PhilippGackstatter/wow

5

https://github.com/PhilippGackstatter/wow

CHAPTER 2
Background

In this chapter we establish a common background for serverless computing and WebAssembly.

2.1 · Serverless Computing

2.1.1 Function-as-a-Service

»Serverless computing is an emerging cloud-based execution model in which user-
defined functions are seamlessly and transparently hosted and managed by a
distributed platform« [Nas+17].

Most developers know serverless computing in the form of Function-as-a-Service (FaaS). The
major cloud providers have FaaS offerings, such as AWS Lambdas1, Google Cloud Functions2,
Microsoft Azure Functions3 or IBM Cloud Functions4. They seamlessly and transparently host
the functions for the users without them having to actively manage scaling or administer
infrastructure. Fox et al. point out, that these offerings are more appropriately described as
»server-hidden«, since these platforms hide how functions are run or how scaling is done, and
since there are, in fact, servers, but hidden ones [Fox+17]. They see serverless as a natural
evolution from running applications on bare metal, then in virtual machines, later in containers
and now as functions. They point to the convenience of the application developer not having
to worry about provisioning infrastructure and the associated scalability concerns, as the
major advantage of serverless. Castro et al. observe a similar perspective: serverless is the

1https://aws.amazon.com/lambda/
2https://cloud.google.com/functions/
3https://azure.microsoft.com/en-us/services/functions/
4https://www.ibm.com/cloud/functions

7

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.ibm.com/cloud/functions

2. Background

successor to Platform-as-a-Service (PaaS) such as Google’s App Engine, but it improves on
PaaS by charging users only for what they use – the »pay-as-you-go« model [Cas+19]. As
much as serverless is an evolution of this area of cloud computing, it is an addition in others.
Functions are essentially stateless; and they have to be programmed with that context in mind,
due to their nature of potentially being destroyed and re-created at any given time. Since pure
functions by themselves are not very useful, they are often combined with other offerings of
the Backend-as-a-Service model, such as databases or event buses [Eis+21a]. One concrete
example is the AWS API Gateway5, a managed service for creating APIs. The serverless AWS
Lambdas can handle requests to endpoints of such an API, i.e. each endpoint could be mapped
to a different Lambda. This can act as a replacement for the traditional monolithic web server
to implement backend APIs following the concept of microservices.

McGrath and Brenner describe serverless as the manifestation of the idea, that applications are
defined by events and the actions they trigger [MB17]. Events can be a rule firing, a file being
uploaded to a storage system or an edge device measuring sensor data and posting it via HTTP.
If many events occur at once, the serverless platform is able to scale-up to meet the demand.
Serverless is also ideal if no events occur, because no cost for the user is incurred. Serverless
platforms are able to offer that, because they follow the scale-to-zero principle: functions that
are not used do not take up resources. In turn, these resources can then be used for other
function executions, exemplifying the principle of elasticity.

2.1.2 Serverless Architecture

API
Gateway

Load
Balancer

Function
Store

retrieves function codeSandboxing
Execution

Engine

Container
Registry

pulls container

Figure 2.1: A generalized serverless architecture based on OpenWhisk, OpenFaaS and Open-
Lambda.

5https://aws.amazon.com/api-gateway/

8

https://aws.amazon.com/api-gateway/

2.1. Serverless Computing

Based on popular open-source serverless frameworks we can infer what a typical serverless
architecture looks like. We use OpenFaaS6, Apache OpenWhisk7 and OpenLambda8 as our
basis and sketch this generalized architecture in Figure 2.1. The system is exposed through
an API Gateway. A user can interact with the system through the gateway and manage (i.e.
Create, Read, Update and Delete) functions, set up scheduled triggers or retrieve the results
of previous invocations. Once a function is created and an execution request comes in, the
load balancer will pick an appropriate host for execution. Each of these runs a sandboxing
execution engine, such as Docker or a similar container runtime, which runs user functions
in an isolated manner. Serverless frameworks allow developers to write their functions in a
variety of languages; they are almost language-agnostic. Since many popular languages need a
runtime, such as node.js , a Python interpreter or a Java JRE , these runtimes are baked into
container images. In order to execute a function, the container image with the appropriate
runtime is pulled from a container registry. The function’s code is retrieved from an internal
database. The container is started and the code is injected and prepared for execution. Finally,
the function is invoked with the user’s parameters and the result returned to the framework,
which in turn returns it to the user. Typically, frameworks implement optimizations such as
pre-pulling images onto the hosts or keeping started containers around for some time, to avoid
the costly first startup on subsequent invocations. Here, we see a discrepancy between the
aforementioned ideal of scaling to zero and real world implementations. If post-invocation,
containers are still running but users are no longer billed for them, the incurred cost falls to
the platform operator. An ideal framework would be truly scale-to-zero, but there is one issue
that prevents them from being so.

2.1.3 Cold Start

In the context of serverless computing, a cold start refers to the invocation of a function, when
all of the necessary resources for its execution must be provisioned from scratch. A cold start
thus delays the execution of the function itself, by the amount of time it takes for the resources
to become ready. This is what we call the cold start latency or cold start time. Wang et al.
have measured the cold start latency at major cloud providers such as AWS and Google Cloud
Platform [Wan+18]. The cold start time depends on the allocated memory, from which the
CPU allowance is determined. The median cold start latency for AWS was between 250 ms
(1536 MB) and 265 ms (128 MB) and between 110 ms (2048 MB) and 493 ms (128 MB) for
Google, both depending on the amount of memory assigned to the instance.

Cold starts prevent serverless platforms from rapidly scaling to zero in practice. If every
function would be executed in a newly provisioned container, subsequent invocations of the
same function would all incur the cold start debt and would not be performant enough. Thus,
typical optimizations are to keep these resources provisioned, such that repeated requests are
faster to execute. Apache OpenWhisk, for instance, keeps a function’s container paused and

6https://www.openfaas.com/
7https://openwhisk.apache.org/
8https://github.com/open-lambda/open-lambda

9

https://www.openfaas.com/
https://openwhisk.apache.org/
https://github.com/open-lambda/open-lambda

2. Background

ready for reuse for 10 minutes, before removing it entirely. AWS Lambda’s cold start policy has
been reverse-engineered and the findings indicate that an instance stays alive for a duration of
5 to 7 minutes, during which no cold start will take place [Shi21].

Cold starts are an issue for latency-sensitive applications, where additional hundreds of millisec-
onds are unacceptable. Cui gives examples such as food ordering services, e-commerce sites or
social networks, which all have unpredictable bursts of requests at certain points in time. In
serverless versions of these applications, these bursts would translate into multiple concurrent
cold starts, of which each individual one is slower than a singular, non-concurrent cold start.
Thus, the numbers cited above increase significantly with higher concurrency [Moh+19; Cui18]
– something that auto-scaling platforms ought to handle particularly well.

2.1.4 Serverless Edge Computing

Judging by the increasing adoption of the IoT, we are »entering the post-cloud era«, as Shi
and Dustdar write [SD16]. The edge computing paradigm promises to be a solution to the
massive amounts of data that will be generated at the edge. A wearable body sensor measuring
health data for example, can use the wearer’s smartphone – here, the edge device – for data
processing rather than sending the workload all the way to the cloud. In general, edge devices
are machines, that sit between the data source and the cloud. This processing close to the
data source has a number of advantages, such as enabling very short response times as well as
working with privacy-sensitive data. This is necessary, since sending all data to the cloud has
comparably higher latency and puts more strain on the wide-area network.

One piece of the puzzle towards realizing this paradigm is serverless edge computing. Aslanpour
et al. lay out the vision for serverless edge computing, of which we highlight two points [Asl+21].

• Due to IoT devices’ unpredictable workload, an under- or overprovisioning of static
resources such as VMs or containers would be likely. Serverless with its ability to scale to
zero, even with aboves caveat, provides more precise provisioning of resources and only
incurs cost when used, bringing advantages for operator and user, respectively. Executing
serverless workloads in an energy-constrained setting, such as on single-board computers
(SBC), this becomes doubly important.

• Serverless computing tends to be used for unpredictable, bursty workloads that require
immediate up-scaling. Application architectures for IoT devices are usually event-driven
and often unpredictable, making them a perfect fit for serverless.

Serverless computing can be the enabler for edge computing. But some of its original design
decisions need to be re-examined, as Nastic and Dustdar point out, due to the »[…] inherently
different nature of Edge infrastructure, for example, in terms of available resources, network,
geographical hyper-distribution, very large scale, etc« [ND18].

IBM has reacted to these changed requirements and introduced Edge Functions on the IBM
Cloud Internet Services [Far+19]. This offering allows developers to run code closer to the user

10

2.1. Serverless Computing

by deploying functions to their edge network. As a consequence of the resource constraints
of edge devices, their offering uses the JavaScript V8 engine and its isolates feature. This
is a similar step as moving to a WebAssembly executor, i.e. using a less costly sandboxing
mechanism than containers to account for the resource constraints on the edge. Some of
their serverless edge computing use cases include »personalized user experiences through
conditional routing and originless responses.« The latter means returning responses directly
from the edge without going all the way to the cloud [IBM21]. This leads to another use case:
increased API responsiveness through aggregation and caching from multiple cloud-based API
endpoints.

2.1.5 Serverless Workload

Since we aim to redesign the fundamental building block of a serverless framework, namely
the underlying container runtime, it is important to examine what the serverless workload
looks like. Here, we provide an overview of the research in this area.

Shahrad et al. have characterized the serverless workload for a large cloud platform: Microsoft
Azure [Sha+20]. Because of their large number of users, this study can be considered a very good
representation of the average serverless workload in the cloud. They find that, on average, 81%
of functions are invoked less than once per minute. However, those accessed more frequently
make up 99.6% of all invocations. Those frequently accessed functions should thus be kept in
memory, to avoid the cold start entirely. The less frequently accessed functions should not be
kept in memory, but created, executed and destroyed immediately, in order to save resources.
For this to be viable, the cold start needs to be a cheap operation. In general, the cheaper the
cold start, the smaller the amount of time that functions need to be kept in memory. Customers
are only billed for the execution time of the function in FaaS. Operators bear the cost of keeping
functions in memory – or resources warm, more generally. Thus, shorter cold starts reduce
costs.

Shahrad et al. also find that on average, 50% of functions execute for less than one second.

»The main implication is that the function execution times are at the same order of
magnitude as the cold start times reported for major providers. This makes avoiding
and/or optimizing cold starts extremely important for the overall performance of a
FaaS offering« [Sha+20].

This is corroborated by the cold start times of Wang et al. cited above. Because of these findings,
the primary goal in this work is that of reducing the latency of cold starts and make them a
more efficient process, in turn enabling reduced keep-alive times. Even in light of a cheap cold
start, we still need to make sure that we have a resource-efficient way to keep the function
in memory. Consider that the most frequently accessed functions make up an overwhelming
share of invocations. It is unlikely that we achieve a reduction of cold start times to such a
degree, that always cold starting these functions will be more efficient than a short keep-alive

11

2. Background

period allowing a reuse of an already initialized function. Thus, unless we can make calling
a cold function as efficient as calling a warm one, we will need some amount of keep-alive.
This is again a violation of the scale-to-zero principle, although a less severe one, since we can
get away with a smaller period. As Shahrad et al. point out, there is a fundamental trade-off
between using memory to keep functions warm, and forgoing it, but incurring the additional
latency of a cold start. Because of that, we also examine the memory cost of our approach
since it has implications for the keep-alive policy.

Eismann et al. conducted a study on why companies adopt serverless, for which applications
it is suited best and how they are implemented [Eis+21a]. They analyzed 89 open-source
serverless applications, of which 84% have bursty workloads. Thus, these spikes in demand
– manifested in concurrent requests, in turn causing up-scaling – ought to be handled well
by serverless platforms. They find 69% of the applications have a data volume of less than
10 MB. Thus, memory-bound applications are likely not a primary use case. Furthermore,
39% of the applications have a high traffic intensity, 47% have a low traffic intensity and 17%
utilize scheduled functions. Thus, the latter combined 64% represent on-demand scenarios
where the platform will experience cold starts, since it is less likely that a warm function exists
in those cases. According to the authors, 88% of the applications make use of Backend-as-
a-Service (BaaS) offerings. Storage, databases and messaging services are the most popular
ones. Leitner et al. carried out a mixed-method study based on grey literature, interviews
with serverless practitioners and web-based surveys, to provide an overview of the state of
serverless [Lei+19]. They find that developers who successfully adopted serverless have a
different mental model than traditional web-application developers. The former design the
application as a composition of standalone, external components, which they have not written
themselves. Similar to Eismann et al., they also find developers use databases (78%), API
gateways (69%) or logging services (66%) in conjunction with their serverless function. They
argue that the real power of serverless comes from its ability to glue together various existing
cloud services. Typical use cases, according to Leitner et al., include processing application
data (76%), like transforming images; performing scheduled jobs (64%), like notifications or
backups; or processing monitoring and telemetry data (39%). We can infer application data
processing to be potentially CPU-bound, while the other examples are more likely I/O-bound,
i.e. glueing external services together.

From the large number of applications using BaaS, we can infer that these functions will make
requests to external services and thus spend the majority of time waiting for network I/O to
complete while not actively utilizing the CPU. More generally, network I/O-bound workloads
are a primary type that serverless platforms should be able to handle well. This is further
corroborated by the languages typically used to write serverless functions. Eismann et al.
report that the overwhelming share of serverless functions is implemented in JIT-compiled
or interpreted languages such as JavaScript (42%) and Python (42%). Data from dashbird.io9,
a serverless monitoring tool, underpins the assumption that these languages are dominant.
Of their 3000+ users, 76% use JavaScript, 13% use Python and 8% use Java [Reh19]. We can
see that node.js in particular is a highly used engine for serverless. It is best known for its

9https://dashbird.io/

12

https://dashbird.io/

2.2. WebAssembly

event-driven I/O; less so for making the most efficient use of the CPU. This has two implications.
One is, that CPU-bound tasks are not the primary serverless use case. If this were the case,
we would likely see a much higher share of compiled languages. Although a language like
Python can be extended with performant modules written in C, the dashbird data in particular
indicate that node.js -level performance is almost always good enough. The other is, if a
new container runtime can be as fast as these interpreted or JIT-compiled languages, the new
platform does not suffer from a loss in performance and, if it can be even faster than those, it
even has benefits for CPU-bound applications to move to the new platform.

From this research, we might conclude that the current serverless platforms already fulfill these
use cases. However, selection bias tells us that the current representation plays towards the
strengths of the current approach and would not include use cases which are not working in
this environment in the first place. Indeed, interviewees from the Leitner et al. study explicitly
and repeatedly voiced concerns about building user-facing applications because of the high
response times in case of cold starts. The authors concluded that applications requiring high
performance or real-time requirements are not suitable to be built on serverless platforms –
at least, not yet. This leads back to the cold start being a real problem that not only incurs
resource costs, as explored previously, but, more importantly, completely inhibits certain use
cases. However, it also shows that the lack of high performance in serverless may be an
inhibiting factor as well. With that in mind, we can neither exclude CPU-bound applications
from our focus, nor make them the primary one.

2.2 · WebAssembly

For the longest time, JavaScript was the sole client-side language in web browsers. With
the rising popularity of the web platform and its growing number of APIs, more and more
complex web apps were written, and increasingly in other programming languages. Necessarily,
these languages had to treat JavaScript as a target format, like Java bytecode or machine-level
assembly, in order to run on the web. Of course, JavaScript was not designed for this and so
performance was lacking.

In 2013, a solution to this problemwas introduced by engineers atMozilla, aptly named asm.js .
It restricts itself to the parts of JavaScript that can be optimized ahead-of-time [HWZ14]. It
could be used to compile a C/C++ program to the asm.js target format to execute it with a
JavaScript runtime faster than the equivalent JavaScript program would be. Benchmarks even
showed it to run no more than 1.5× slower than native code [ZN13].

Finally, WebAssembly (Wasm) was born out of asm.js in 2015, with more layers of optimiza-
tions. It is a portable and universal binary instruction format for memory-safe, sandboxed
execution in a virtual machine. It is possible to write programs in a variety of languages like C,
C++, Rust, AssemblyScript, C#, Go, Swift and many more, and compile them to Wasm, which
finally relieved JavaScript of its role as the universal target format of the web [W3C20].

13

2. Background

2.2.1 Performance

Compared to asm.js , the Wasm binary format is smaller in size (10-20%) and faster to parse,
by an order of magnitude [Cla19]. It is 33% faster than asm.js on average [Haa+17]. Jangda
et al. ran the PolyBenchC benchmark suite to compare Wasm to native code and found that 13
of the 24 benchmarks performed within 10% of native code [Jan+19]. However, they argue that
the roughly 100 lines of code long benchmarks are not fully representative of typical use cases.
They run the SPEC CPU benchmark suite, which are significantly larger POSIX applications.
On average, they find Wasm to be slower than native by 1.55× in Firefox and 1.45× in Chrome.
Wasm modules tend to be smaller than native x86_64 binaries. On average, Wasm modules
have 85% of the size [Haa+17].

Serverless functions, by design, are microservices and thus limited in scope. Developers are
compelled to write short and efficient functions, since they are billed for the execution time.
The PolyBenchC benchmark results are thus likely more representative than the SPEC suite.
However, this assumption is good enough and will be an aspect of our evaluation, regardless.
To increase performance and potentially startup time, Wasm modules can be compiled to native
code, either by JIT engines at the time of execution, or ahead-of-time by the same JIT engines
or AoT compilers. This process produces an artifact specific to the WebAssembly runtime that
compiled it. At this point, the universality of the Wasm format is lost. Doing the translation
to native code ahead-of-time means the compilation process does not take up time when we
need to execute. Consequently, this is an interesting technique to reduce the time it takes to
get a WebAssembly module ready for execution.

2.2.2 Security

Wasm defines two important goals for security.

»(1) protect users from buggy or malicious modules, and (2) provide developers
with useful primitives and mitigations for developing safe applications, within the
constraints of (1)« [W3C20].

To that end, Wasm uses fault isolation techniques to sandbox the executing module. Interac-
tion with the host environment is only possible through imported functions [W3C20]. This
mechanism represents a »safe foreign function interface« as it can communicate with the
outside environment, but not escape the sandbox [Haa+17]. This is an important security
feature of Wasm. A module without imports is side-effect free from the host perspective.
Even printing Hello World! requires importing a print function. Similarly, writing to files,
network sockets or reading the clock requires imports, which will be discussed more in the
next section.

In Wasm, all memory access is confined to a module’s linear memory. This memory is separate
from the code space, which prevents programs from overwriting instructions. Programs can

14

2.2. WebAssembly

only operate in their own execution environment, but cannot escape. This means Wasm
runtimes can safely execute multiple untrusted modules, with their own linear memories, in the
same process memory space and without requiring additional isolation [Haa+17]. In particular,
»Reading and writing to arbitrary memory locations cannot be expressed in WebAssembly«,
because Wasm’s memory instructions work with offsets rather than addresses. Furthermore,
bounds checking at runtime ensures the instructions write only to the linear memory [Den19].
This is a key aspect that enables Wasm as a lightweight container technology. Only a single
instance of a runtime is needed to execute many (e.g. serverless) functions.

In the assembly produced by compiling a C program, the call to a function is expressed as
jumping to the address of the function’s first instruction. In exploits of such programs, these
addresses are often crafted or changed by malicious actors to take control of the program’s
control flow. In WebAssembly on the other hand, a function is represented as an index in a table,
i.e. it introduces an additional level of indirection to express the address. That adds to security,
since an arbitrary address to a Wasm function cannot be crafted with Wasm instructions
[Den19]. And since the program’s memory is separate from the function instructions, an
attacker also cannot overwrite them. Wasm thus features control flow integrity, because it
enforces structured control flow. Jump targets and other properties are validated in a single
pass before a module is instantiated. In particular, validation prevents jumps from targeting
arbitrary locations. This validation must happen, according to the Wasm specification, before
a module is executed by a runtime [Haa+17].

Lehmann, Kinder, and Pradel provide a critique of WebAssembly’s binary security [LKP20].
Many mitigations that have made x86 binaries safer, are not present in WebAssembly. Ac-
cording to them, this »re-enables several formerly defeated attacks«. Some of the important
points include the following:

• Because all data such as constants, the call stack and the heap are in Wasm’s linear
memory, and any offset from zero up to the current memory’s size is valid, overflows can
corrupt any of these. In native binaries on the other hand, these are separate sections
protected through unmapped pages, such that an overflow would result in program
termination.

• Buffer overflows on the stack or heap, as well as stack overflows themselves can be used
to obtain a write primitive. Native binaries prevent stack overflows from corrupting data
with stack canaries [Cow+98].

• There is no address space layout randomization in Wasm, which would make exploits
harder to execute, since a pointer to the stack or heap needs to be obtained first.

• Wasm programs ship with their own memory allocator, whose size is important since
Wasm is often transmitted over the network. Smaller implementations of allocators such
as emmalloc re-enable attacks against allocator metadata.

Wingo points out that writing software in memory-safe languages, such as Rust or garbage-
collected ones, is »a comprehensive fix to this class of bug« [Win20]. C and C++, on the other

15

2. Background

hand, are not memory-safe languages. Thus, while the criticism above is valid for programs
written in memory-unsafe languages, it does not apply to memory-safe programs. But there is
more subtlety to it, since, for example, Rust programs may also link to C programs, which are
always considered memory unsafe by the compiler. They can also include blocks of unsafe
code, where developers can generally use operations that the compiler cannot prove to be safe
like dereferencing raw pointers. In both cases the compiler cannot guarantee the program to
be memory-safe. Whether WebAssembly should include mitigations for issues, that certain
classes of programs do not need, or whether they have to be added to the appropriate compiler
toolchains, remains to be discussed.

The presented vulnerabilities apply to a Wasm program itself, but do not enable compromising
the host system. Thus, to the best of our knowledge, the current research does not show
breakage of WebAssembly’s isolation. With both performance and host security under its belt,
as well as being a portable and universal target format, Wasm turns out to be useful not just in
the browser, but also outside of it.

2.2.3 System Interface

Wasm targets an abstract machine, so it needs an interface to the system. In the web browser,
that works by calling into the browser through JavaScript glue code. Outside of it, a new
solution was needed: The WebAssembly System Interface (WASI). This interface was designed
with Wasm’s goals – portability and security – in mind. WASI is binary-compatible, which
means that Wasm binaries are portable between different concrete systems like Linux and
Windows, but also browsers. The Wasm runtimes effectively implement that interface and
translate it to the underlying concrete system. WASI also innovates in security, over the classic
coarse-grained access control. It specifies a fine-grained capability-based security model, that
consists of two parts. First, WASI makes use of the aforementioned import mechanism of
Wasm, to adhere to its security model. The Wasm module cannot directly call an OS system
call due to sandboxing, but imports equivalent WASI functions instead [Cla19]. For instance, a
module that wants to open a file needs import statements like these, given in the WebAssembly
text format:

(import "wasi_snapshot_preview1" "fd_read" (func (;5;) (type 8)))
(import "wasi_snapshot_preview1" "path_open" (func (;7;) (type 22)))

The runtime needs to supply those imports, or the module cannot run. In effect, the runtime and
module need to be in consensus about which functions can be accessed. In a serverless context
for example, the cloud provider could grant or refuse access to certain functions, enabling
security policies on a per-function basis. However, even that is not fine-grained enough. Since
WebAssembly does not use virtualization, all modules share the same resources, like the file
system. Therefore, the cloud provider might only want to allow serverless functions to cache
some data temporarily in a function-specific /tmp/<function_id>/ directory, but not allow
opening /etc/passwd . This is where WASI takes ideas from capability-based security.

16

2.2. WebAssembly

In order to open a file, the module needs to call functions accessing the file, like fd_read ,
with a preopened file descriptor [Cla19]. The Wasm module then has the capability to access
that file, but not others. The file can be opened by the Wasm runtime itself, or the program
that embeds the runtime. That file descriptor is stored in a special WASI module, which the
runtime – similar to a dynamic linker – links to the Wasm module from where it imports the
functions. Again, this gives the embedder, e.g. a cloud provider, the chance to customize the
exact capabilities on a fine-grained level.

2.2.4 Execution

Just like Java Bytecode needs a JVM, Wasm needs a runtime as well. Since WebAssembly
itself is just a specification, we need a concrete implementation to execute a module. There
are many implementations available, the most used ones likely being those in the major
browser JavaScript engines. However, since we do not need support for JavaScript in this
work, we choose to use standalone runtimes. The absence of JavaScript support may also
provide a smaller runtime footprint. Those come optimized for different use cases and different
compilation strategies. Wasm can be interpreted, just-in-time compiled or compiled to native
code, ahead-of-time. All of these have different properties in terms of their cold start latency
as well as their runtime performance. We discuss and select concrete runtimes in Chapter 3.

17

CHAPTER 3
Design

In this chapter we lay out the requirements that an implementation of aWebAssembly container
runtime should satisfy in general. We introduce several WebAssembly runtimes and pick three
of them for our implementation. By looking at OpenWhisk specifically, we expand on the
requirements and the parts that need to be modified in order to enable our new container
runtime. Other approaches that could be used to run WebAssembly workloads are also detailed.
Finally, we describe and discuss our concrete implementation in Apache OpenWhisk, how to
achieve fast cold starts and high performance, while also examining the trade-offs involved.

3.1 · Core Approach

As we have seen in the previous chapter, there are a number of issues with serverless in general,
but also serverless on the edge. In this section we summarize the core problem and describe
our idea for rectifying these issues to make serverless (edge) computing more viable.

A substantial cold start latency has emerged as the paramount issue of the serverless platform.
It prevents them from implementing true scale-to-zero, since functions are kept warm after
invocations, wasting energy and resources. While we may not be able to get rid of the keep-alive
completely, a significant reduction in cold start latency would allow for a significant reduction
in keep-alive time. Since energy and resources are even more precious on typical edge devices,
this is also very important for their quality of service. Average cold start times are on the same
order of magnitude as average function execution times, thereby significantly impacting the
quality of service a serverless platform can offer. Moreover, serverless is employed by developers
for bursty, unpredictable workloads, a pattern that is also common at the edge. In this scenario,
we see concurrent requests, which translate to concurrent cold starts. The more concurrent cold
starts in Docker, the longer each one takes [Cui18]. Operators are forced to choose between
saving cost and resources or enabling a high quality of service – in particular shorter response
times. While this trade-off is inevitable to some degree, the cold start exacerbates it. A new

19

3. Design

container runtime must significantly alleviate that initial latency, to provide mutual benefits
for the serverless user and the operator.

Serverless enables the execution of »polyglot tenant-provided code« [ND18]. A new runtime
must keep up these principles of being programming language agnostic to continue enabling all
developers to use the serverless platform. To allow for multi-tenancy on the same physical host,
containers need to be sandboxed securely. As described in the previous chapter, WebAssembly
provides sandboxing and support for many languages with support for more likely to come. At
the same time, it is a lighter-weight solution than virtualization with Docker containers. In
contrast to Docker, its isolation does not depend on operating system features, which is where
the bottleneck for Docker originates [Moh+19]. Thus, it seems like a good candidate to replace
Docker containers in serverless platforms while alleviating the cold start latency. This is also
why WebAssembly may fare better on low-power edge devices.

Mendki compared WebAssembly and Docker container startup times and found WebAssembly
being 91% faster than containers and used 75% less memory [Men20]. Hall and Ramachandran
found their WebAssembly-based serverless platform fared 60% better, on average, than the
Docker container solution, for their concurrent »Multiple Client, Multiple Access« workload
[HR19]. These promising results validate the core idea of the approach.

3.2 · Requirements

Some of the requirements for a WebAssembly container runtime are a direct consequence of
the issues we have assessed. We expand on others in the following sections. The summary of
concerns and requirements are:

1. Be easily integratable with an existing serverless framework.

2. Be programming-language agnostic.

3. Provide a cheap sandboxing mechanism to ensure multi-tenant capability and no adverse
effects on the cold start latency.

4. Be as close to native speed as possible to be a viable alternative to existing container
runtimes.

5. Run on devices with potentially different instruction set architectures, at least x86_64
and arm .

6. Be able to efficiently handle a large amount of I/O concurrently.

7. Be thread-safe.

Finding a suitable serverless framework that we can modify and integrate with, is the topic of
the following section. In Chapter 2 and the preceding section, we have seen how WebAssembly

20

3.3. WebAssembly Runtimes

provides some of these requirements, such as sandboxing, potential for high execution speed
and language-agnosticism. However, for our implementation we need concrete WebAssembly
runtimes that provide these properties, so wewill explore the options for such runtimes andwork
out the differences. The choice for which language and libraries to implement our executor with
will be driven by how the Wasm runtimes we choose can be embedded. Other concerns include
having access to highly performant, concurrent I/O and support for correctness guarantees,
including thread-safety.

3.2.1 Apache OpenWhisk

We use Apache OpenWhisk as the framework to implement WebAssembly support for. Open-
Whisk is a production-ready framework, used in the commercial IBM Cloud Functions. Thus,
implementing Wasm support in OpenWhisk would show the viability of the approach in the
real world. The framework is also frequently used by serverless researchers to implement new
ideas to reduce cold start times [Moh+19] or Wasm support via node.js [HR19], making it a
well-respected and frequently used framework. OpenWhisk also has lean components, which
are lighter-weight replacements for its heavier ones, such as Kafka. These enable OpenWhisk to
be deployed on edge devices where the available memory is limited, such as Raspberry Pis, on
which we plan to evaluate our implementation. Furthermore, because OpenWhisk is designed
to be easily extensible with new languages, the language runtime protocol is well-refined and
straightforward to implement.

3.3 · WebAssembly Runtimes

WebAssembly is a specification1 and implementations adhering to it areWebAssembly runtimes.
Since Wasm was originally designed for the web, the virtual machines of browsers, such as
Google’s V8 orMozilla’s SpiderMonkey, can also executeWebAssembly in addition to JavaScript.
With the rise of Wasm outside the web, a large number of standalone runtimes have emerged
and many are actively being developed. This section introduces a number of runtimes with
different compilation strategies and detail the differences. Each Wasm runtime we choose
ultimately results in a separately usable container runtime, while sharing a common wrapper
which implements the OpenWhisk communication layer.

3.3.1 Wasmtime

Wasmtime2 is a runtime that has support for just-in-time compilation, available for the x86_64
and aarch64 instruction set architectures (ISA). It is written in Rust and thus easily embed-
dable from there. Support for the latest WASI standards and future proposals for Wasm are

1https://webassembly.org/specs/
2https://github.com/bytecodealliance/wasmtime

21

https://webassembly.org/specs/
https://github.com/bytecodealliance/wasmtime

3. Design

implemented. It is developed as part of the Bytecode Alliance3, with founding members like
Mozilla, fastly, Intel and RedHat. The cranelift code generator is developed as part of the al-
liance and wasmtime uses it for just-in-time compilation. The code generator’s documentation
points out that the backend for x86_64 is »the most complete and stable; other architectures
are in various stages of development [All21].« Thus, it will most likely run on an aarch64
Raspberry Pi, but performance may not be on-par with an LLVM -based runtime.

3.3.2 Lucet

Lucet4 is the compiler and runtime used for cloud provider fastly’s Terrarium, a platform for
running WebAssembly on edge devices [fas19]. It consists of a compiler and a runtime to
execute WebAssembly. The compiler, lucetc , compiles Wasm modules to native object or
shared object files. The complementary lucet-runtime can then load the native code and
call the contained Wasm functions. Because of this compilation model, execution can reach
near-native speeds. However, the execution is not sandboxed by default, requiring mechanisms
like seccomp-bpf 5, and the security model is actively being developed. It is currently only
available on the x86_64 ISA. Since we require support for smaller edge devices, often built on
the arm ISA, we will not be using lucet . Furthermore, the lack of mature sandboxing makes
other runtimes a better choice. However, the idea of separating the compilation and execution
is appealing to enable short startups and fast execution, and is applied by us, but using other
runtimes.

3.3.3 Wasmer

Wasmer6 is a WebAssembly runtime with support for the three major platforms – Linux,
Windows and macOS – and x86_64 and aarch64 ISAs. Notably, wasmer has already reached
version 1.0 , indicating a certain level of maturity and stability. The runtime offers three
different compilers, singlepass , cranelift and LLVM , whose compilation times get slower
and execution times get faster, in that order, respectively. The runtime has a JIT and a native
engine, which differ in the way the module is loaded. In particular, the native engine produces
a shared object, which can be loaded with a fast dlopen call. The support for high-quality
AoT compilation with LLVM and fast startup times makes wasmer a promising choice for our
purpose.

3https://bytecodealliance.org/
4https://github.com/bytecodealliance/lucet
5https://wiki.mozilla.org/Security/Sandbox/Seccomp
6https://github.com/wasmerio/wasmer

22

https://bytecodealliance.org/
https://github.com/bytecodealliance/lucet
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://github.com/wasmerio/wasmer

3.3. WebAssembly Runtimes

3.3.4 WASM3

Due to Wasm’s simplicity in the binary format, there is wide-spread interest for running it on
embedded devices. A result of that interest is wasm3 7, a Wasm interpreter that claims to be
the fastest. They argue in favor of interpretation over JIT compilation, since startup latency is
more important in many situations. Furthermore, portability and security are easier to achieve
with this approach and development with the virtual machine is simpler. Still, a performance
penalty of 4 – 5× compared to JIT or 12× compared to native execution, leads us to believe that
no amount of gain in startup latency can make up for the loss in performance. Even though
our primary goal is that of reducing the cold start latency, the execution that follows cannot
massively lag behind Docker containers, if adoption is to succeed. The relationship between
startup and execution performance is too far out of balance for this runtime.

3.3.5 WebAssembly Micro Runtime

However, there is still value in runtimes written specifically for embedded devices. The Web-
Assembly Micro Runtime8 (wamr) has support for all three of the mentioned compilation
strategies. It has low memory usage and binary size. The claimed binary size of the AoT
runtime is just 50 kB. Furthermore, the AoT runtime claims near-native speed. For execution
on edge devices, where memory is scarce, this runtime may allow more modules to be kept
in-memory compared to heavier-weight runtimes.

Runtime ISA support Compilation Platforms

wasmtime x86_64 , aarch64 AoT, JIT

lucet x86_64 AoT

wasmer x86 , x86_64 , aarch64 AoT, JIT

wasm3
x86 , x86_64 , arm ,

Interpreted
RISC-V , …

wamr
x86 , x86_64 , arm ,

AoT, Interpreted
aarch64 , … …

Table 3.1: WebAssembly runtime feature overview.

A summary of the runtimes’ features can be found in Table 3.1. The diversity of compilation
strategies sticks out – clearly no single one is the best for all scenarios. Except for lucet , all
runtimes have fairly good platform support for our use. However, particularly for edge devices,

7https://github.com/wasm3/wasm3
8https://github.com/bytecodealliance/wasm-micro-runtime/

23

https://github.com/wasm3/wasm3
https://github.com/bytecodealliance/wasm-micro-runtime/

3. Design

the lack of support for the 32-bit arm architecture in the runtimes written in Rust, wasmtime ,
wasmer and lucet , may be an issue for future widespread adoption. The support in the other
ones, written in C, is there.

3.4 · WebAssembly in OpenWhisk

In this section, we first examine the possibilities for bringing WebAssembly support to Open-
Whisk before exploring the available options and discussing them in the context of our require-
ments.

3.4.1 OpenWhisk’s Anatomy

In order to understand the requirements for our Wasm-flavored OpenWhisk, we first need to
understand the design of OpenWhisk itself.

API
Gateway

Load
Balancer

Function
Store

Retrieves Action
Invoker

Docker
Daemon

Docker
Container

Creates

InvokesInstructs

Injects

Figure 3.1: The invocation flow of an action in Apache OpenWhisk, based on the source code
and documentation [Dev19]. Potentially many Invokers can exist on different hosts in this
setup.

Figure 3.1 sketches the important parts of OpenWhisk’s design. Users interact with it through
its API Gateway, which consists of nginx , mostly for TLS termination, and the Controller ,
which implements the main logic. It handles the creation of actions – OpenWhisk’s name
for serverless functions – authentication and authorization as well as invoking the action. In
the latter case, the controller uses its load balancer to determine one of the potentially many
Invoker s, that should handle the request. The Invoker s are subscribed to an Apache Kafka
queue, to which the load balancer publishes the request. The controller and its load balancing
apparatus take a central role in OpenWhisk, but in our figure they are only represented by the

24

3.4. WebAssembly in OpenWhisk

API gateway and load balancer, because we will not be modifying these parts and can treat
them as blackboxes accordingly. Our focus is on the Invoker . It is the part of OpenWhisk
responsible for invoking the action. A number of steps are involved in that process [Dev19].

1. It retrieves the action’s code and execution permissions from an Apache CouchDB
database, where the Controller stored it during action creation.

2. It instructs the Docker daemon to start a new container, based on the runtime that the
action needs to execute. This could be an openwhisk/action-nodejs-v10 image for
JavaScript actions, but could also be a generic openwhisk/dockerskeleton blackbox
image that can execute any binary, such as one written in Rust or C.

3. Finally, it injects the action’s code into the container, invokes it with the given parameters
and returns the result [Dev19].

Because OpenWhisk supports many runtimes and even the mentioned blackbox image, it
needs a common protocol to communicate with all of them. The just-described step 3 is the
gist of that protocol. Each runtime needs to implement a number of functions. The start
function creates a new container and returns its address. The following requests to the /init
endpoint are then sent to this address, where the container receives the code and takes the
necessary steps to make the action ready for execution. Thus, over a container’s lifecycle,
this endpoint is called exactly once. Once initialized, the /run endpoint can be called with
different parameters many times to execute the action [Dev19].

This implies that the container is not destroyed immediately after it has been invoked. Indeed,
OpenWhisk, just like other known serverless platforms, uses various optimizations of the
described flow, in order to improve the system’s performance. Among those are pre-warming
containers or keeping the container running for some time after it has been invoked – the
previously introduced keep-alive time. Both have the same effect: When the user wants to
invoke the action, no initialization is necessary and /run can be called immediately. These
optimizations exist precisely because the cold start has been recognized as an expensive
operation. In the absence of invocations and some threshold time elapsed, the container is
removed entirely. In that case, the container runtime’s destroy function is called, which
removes the container and frees up the memory it used [Dev19]. These optimizations are part
of the OpenWhisk logic and independent of the underlying container runtime. Our container
runtime will profit from them too, but we have to take them into account in our design.

3.4.2 OpenWhisk on Kubernetes

OpenWhisk can be deployed on a Kubernetes cluster, a container orchestration tool for au-
tomating the deployment and scaling of containers [Aut21]. OpenWhisk has a service provider
interface (SPI) called ContainerFactoryProvider , which represents the underlying container
management platform. It provides two implementations of that SPI [Dev20].

25

3. Design

1. The DockerContainerFactory implements the architecture shown above, except that
most components of OpenWhisk run in separate Kubernetes pods. In non-Kubernetes
deployments, they usually run in separate Docker containers. The crucial part of this
deployment is that the Invoker runs in a single pod and also spawns all of the Docker
containers inside that pod. Multiple Invoker s can run on different worker nodes.
Because OpenWhisk communicates directly with the local Docker daemon, the container
management latency is rather small, but this SPI implementation does not take advantage
of Kubernetes’ scaling mechanisms.

2. The KubernetesContainerFactory is the counterpart to these properties. It interfaces
with the Kubernetes API to create and schedule actions in containers – in turn contained
in pods – to run on different Kubernetes worker nodes. This trades higher container
management latency for access to Kubernetes’ scaling and scheduling mechanisms.

3.4.3 Executing WebAssembly with OpenWhisk

To execute Wasm modules in OpenWhisk, we have two similar options with similar trade-offs.

1. The first is using one of a number of WebAssembly runtimes that are currently being
developed and are in various stages of maturity. We would need to embed one of these
runtimes in a program of our own, which provides a similar interface as Docker. This
WebAssembly container runtime would be able to replace the Docker daemon in the
architecture presented above, and run Wasm modules instead of Docker images. Since
this program would sit in-between OpenWhisk and the Wasm runtime, we would have
precise control over the management of the modules, i.e. whether the Wasm module is
just-in-time compiled, interpreted or compiled to native code ahead-of-time; the caching
layer that keeps initialized modules ready for fast execution; or the configuration of the
system interface with which Wasm modules can interact with the underlying operating
system.

2. The second option is to use Kubernetes as themanagement system for ourWasmmodules.
Kubernetes is generic over the underlying container runtimes, and as such it runs on
containerd , CRI-O and Docker [Aut21]. However, it is also possible to let Kubernetes
pods run on other runtimes by implementing the kubelet API. The krustlet project
provides a kubelet implementation that can execute Wasm workloads [Dei21]. With
that as the container runtime set up, we can instruct Kubernetes to run Wasm modules
instead of the usual container image.

We will explore those two options in more detail and discuss which is the better fit for our
requirements.

26

3.4. WebAssembly in OpenWhisk

3.4.4 Krustlet: The WebAssembly Kubelet

As a kubelet , krustlet runs on Kubernetes worker nodes and accepts workloads of the
wasm32-wasi architecture. Just like a regular kubelet , krustlet will then pull the Wasm
module from an Open Container Initiative (OCI) compatible registry, like a Docker image can
be pulled from Docker Hub. This process allows us to schedule our Wasm workloads from an
Invoker , similar to how the KubernetesContainerFactory implementation schedules ac-
tions in Docker containers. However, this execution model is also different from the OpenWhisk
model in some ways.

• In OpenWhisk action runtimes, there is a separation between the runtime environment,
provided through the Docker image, and the action code, that is stored in a database,
retrieved from there and injected into the container. krustlet expects the Wasm
module to be the equivalent of the container, but with the code baked in. Thus, no
injection is necessary and there is no separation. This is an incompatibility with the
current OpenWhisk model, since the Wasm module does not need to be stored in the
database, but rather in the OCI registry. To implement this in OpenWhisk, we would
have to modify where the module is stored, as well as remove the retrieval from the
database and the subsequent injection, which are then useless operations. The OCI
registry would become part of the OpenWhisk deployment, for latency reasons alone.
We would not expect the cold start to be significantly affected by these changes. Not
having to retrieve the code from the database, but pulling the image from the registry
instead, should roughly be time-equivalent operations.

• Since there is no separation anymore, every Wasm module needs to implement the Open-
Whisk runtime protocol itself, instead of being able to rely on the runtime implementing
it once. In practice, this means implementing the /init and /run endpoints, where
the former would no longer do anything useful, since there is no code to inject. It follows
that every Wasm module needs to include an HTTP server; increasing the size of its
binary and runtime cost above what would be needed only for its unique functionality. Of
course, the current OpenWhisk version implements it in the same way: Each container
must come with an implementation of the OpenWhisk protocol. Thus, we can assume
that the extra cost is not substantial. An advantage of this approach is that the system is
more resilient, since one container failure does not affect others.

• Evidently, Docker container operations are already barely fast enough to facilitate server-
less platforms. As the OpenWhisk developers pointed out in the documentation for their
KubernetesContainerFactory , Kubernetes pod management operations come with an
even higher latency. More generally, Kubernetes is a tool that has not primarily been
designed for serverless platforms. While some platforms like OpenFaaS or Knative9 do
depend on it, they also suffer from significant cold starts. It is therefore reasonable to
re-examine this choice. Because of these aspects, we have concerns about not alleviating

9https://knative.dev/

27

https://knative.dev/

3. Design

the cold start latency with this approach. What we may win by starting Wasm rather
than Docker containers, we may lose through higher management latency.

• Because network support in WASI is still under active development, the current alterna-
tive is to implement a wasmcloud-actor , which essentially provides capabilities such
as networking to Wasm modules [Tea21]. This would be necessary due to the afore-
mentioned HTTP server requirement. The wasmcloud uses either wasm3 or wasmtime
as the underlying WebAssembly runtime. In the preceding section, we have excluded
wasm3 for its lack of performance. wasmtime uses a JIT compiler, which compiles the
module when it first receives the code. Recall that our fourth requirement is near-native
execution speed. Compared to embedding a runtime, the wasmcloud approach does not
give us the same level of control over the compilation strategy and execution. However,
having control over these aspects is a priority, since these can substantially affect startup
and execution time. A JIT compiler, in its typical usage, may impose a substantial startup
tax.

While this approach has its merits, we believe that there would be higher friction for imple-
menting it in OpenWhisk than writing our own purpose-built Wasm executor.

3.4.5 An OpenWhisk-WebAssembly Executor

Writing our own executor allows us to integrate WebAssembly into OpenWhisk with fewer
changes to it. Furthermore, the more precise control over container management as well as
the compilation strategy and execution are the main arguments in favor of this approach.
These were some of the main requirements we laid out. We therefore implement our own
layer between OpenWhisk and different WebAssembly runtimes which enable the execution
of Wasm modules. It will implement the OpenWhisk protocol and manage WebAssembly
containers. We refer to them as the Wasm executors, to distinguish them from Wasm runtimes.
Our layer implements the parts independent of WebAssembly runtimes such as OpenWhisk
communication and will be generic over the underlying runtime. Thus, each WebAssembly
runtime will result in a separate executor binary and can be used independently of the others.
We aim to replace the Docker daemon in the architecture shown in Figure 3.1, leveraging the
existing OpenWhisk interface for container management.

In Figure 3.2, we have sketched the high-level OpenWhisk modifications necessary for the
integration. In this invocation flow, we need to modify OpenWhisk’s Invoker such that
it communicates with the Wasm executor instead of the Docker daemon. Fortunately, the
Invoker is already well-separated from the concrete containerization technology through
another Service Provider Interface. As previously mentioned, OpenWhisk supports Docker as
well as Kubernetes through the ContainerFactory trait. We add a WasmContainerFactory
that implements this trait. Via a configuration property, we can instruct OpenWhisk to use
this factory. It uses a WasmClient , that can start and destroy a container by invoking the
endpoints of the same name on the Wasm executor. The start function returns its result

28

3.4. WebAssembly in OpenWhisk

API
Gateway

Load
Balancer

Function
Store

Retrieves Action
Invoker

Wasm
Executor

Wasm
Module

Creates

Invokes

InstructsInjects

Figure 3.2: Invocation flow of aWasm action in ourmodified Apache OpenWhisk. The Invoker
injects the code into the executor which creates a Wasm module ready for execution. It then
instructs the executor to invoke the module with the parameters it passes. The result is passed
back to the Invoker. Again, a deployer can define whether one or more Invokers exist.

as a WasmContainer that extends OpenWhisk’s Container abstraction. This trait handles
container communication, such as calling the /init and /run endpoints. It also implements
suspend and resume functions, which we do not implement. Docker containers potentially
use CPU cycles andmemorywhile they are up, soOpenWhisk pauses them between invocations,
which suspends all of its processes by preventing them from using the CPU. Containers in
our executor, on the other hand, consume only memory but no CPU in-between requests, so
pausing is not a meaningful operation. The Container also allows collecting the logs that an
action produced. This functionality is not strictly necessary for correct operation, so we do
not implement it. Since we want to implement three runtimes in our executor, keeping the
requirements for each of them minimal is important. However, implementing a log mechanism
with WASI is entirely possible.

In OpenWhisk’s Docker container implementation, OpenWhisk only uses the Docker daemon to
create a container, but then communicates with the container directly. In our implementation,
every request is proxied through the Wasm executor to the container itself. This design
presupposes that the Wasm executor can handle a large amount of concurrent requests, which
we noted in our requirements. The advantage is, that not every Wasm module needs to
implement the OpenWhisk protocol, as discussed under the krustlet topic before. The
disadvantage is the single point of failure. However, that is mitigated by the bigger picture
of OpenWhisk. In a truly resilient deployment, we would have multiple Invoker s. A failing
Wasm executor would let the entire Invoker unit fail, but other Invoker s could take over
requests. Furthermore, the executor itself could be scheduled as, e.g. a Kubernetes pod with
a restart policy of Always . Finally, because WebAssembly runtimes isolate faults of their

29

3. Design

containers, it is impossible for a faulty Wasm module to affect the entire executor – barring
bugs in the runtimes. The absence of bugs in the executor and the runtimes – or, at least a small
likelihood of their existence – is therefore also a basic requirement. The mentioned handling
of concurrent requests further implies that thread-safety is another one. We noted both of
these requirements under the umbrella term of program correctness. The executor also needs
to be generally fast, in order to aid in alleviating the cold start problem. That includes efficient
handling of receiving the module’s code from OpenWhisk, instantiating it and setting up the
underlying Wasm executor. In order to enable execution on all kinds of platforms, including
edge devices, another requirement is the executor’s ability to run on different instruction set
architectures.

3.5 · Executor Implementation

To implement these requirements in Apache OpenWhisk, we take the following steps. The
current Docker-based Invoker is replaced to forward all the incoming requests to our new
Wasm executor.

The Wasm executor is written from scratch in the Rust10 programming language. There are a
number of reasons for this choice.

• It is a compiled language with performance similar to that of C or C++.

• The Rust compiler uses LLVM as its backend so Rust programs can be compiled for any
architecture we care about, in particular also aarch64 . Moreover, we can also compile to
wasm32-wasi , the WebAssembly WASI target. This allows us to write highly performant
WebAssembly modules in Rust, such that we can test our executor and the Docker actions
under the best possible conditions.

• It has good support for asynchronous I/O, so Rust web frameworks can efficiently handle
a large amount of concurrent requests.

• Program correctness is one of Rust’s primary goals, which is enabled through a large
amount of guarantees that can be checked at compile time. In particular, writing memory-
safe programs is much easier than in C or C++, while providing a similar level of perfor-
mance.

– A subcategory of these checks is particularly worth pointing out: Rust allows for
»fearless concurrency«, that is, having concurrent programs checked for thread-
safety at compile time. In particular, the compiler can detect subtle bugs like data
races.

10https://www.rust-lang.org/

30

https://www.rust-lang.org/

3.5. Executor Implementation

• Two of the three used Wasm runtimes are written in Rust, so embedding them is well
documented, straightforward and their APIs tend to be the most idiomatic, powerful
and up-to-date. The other Wasm runtime, wamr , is written in C, which can be efficiently
embedded from Rust through bindings.

 #[async_std ::main]
async fn main() -> anyhow ::Result<()> {

 #[cfg(feature = "wasmtime_rt")]
let runtime = ow_wasmtime ::Wasmtime ::default();

 #[cfg(feature = "wasmer_rt")]
let runtime = ow_wasmer ::Wasmer ::default();

 #[cfg(feature = "wamr_rt")]
let runtime = ow_wamr ::Wamr ::default();

let mut executor = tide ::with_state(runtime);

executor.at("/:container_id/init").post(core ::init);
executor.at("/:container_id/run").post(core ::run);
executor.at("/:container_id/destroy").post(core ::destroy);

executor.listen("127.0.0.1:9000").await.unwrap();

Ok(())
}

Listing 1: The main function of our WebAssembly executor. The #[cfg(feature = " ...")]
macros allow us to define multiple runtimes while deciding at compile-time which of them
to enable. Thus, we can build three separate binaries, with each only containing the code
necessary for its runtime.

The main function in Listing 1 suits itself well to describe the high-level architecture of the
executor. The entry point into our executor is through HTTP endpoints. We do not make use
of any advanced HTTP features, so the choice of the web framework does not matter too much.
We use tide [TCW21], an asynchronous by-default web framework ideal for prototyping.
We discuss asynchronous Rust in greater detail in Section 3.5.4. Suffice it to say, that the
 #[async_std ::main] macro starts this program in an asynchronous runtime, which enables
us to use async functions and await them. The async runtime allows multiple concurrent
requests to any of the endpoints, without us having to spawn threads explicitly.

We instantiate one of our three implemented Wasm runtimes, only one of which is compiled
into the executable, based on the feature flag we pass to the compiler. The runtime is used

31

3. Design

as state, in tide terminology, which is to say that it is injected into each request and thus
shared among requests. Sharing objects requires them to be thread-safe. This is where Rust’s
compile-time checks help us ensure this property. The tide ::with_state function can take
any argument that implements three traits: Clone , Send and Sync . The first simply gives
objects implementing it the ability to be duplicated. This is necessary, such that each request
can receive a copy of the runtime. However, a deep copy would be too expensive for each request.
Our runtime wrappers therefore implement Clone as a shallow copy, that is, they create a
new reference to the same inner object that all other wrapper objects also point to. For this to
work safely, we need the other traits. These are only marker traits11, indicating that an object
satisfies a property. Send means a type can be transferred across thread boundaries, while
Sync means that references to that type can be shared between threads. These properties are
satisfied, if the types that we use in the definition of our runtimes and those used transitively,
have these properties. That is all to say that the types of the runtimes we use need to be
thread-safe, i.e. implement those marker traits. Here is where the differences between the
runtimes start to emerge, but we discuss those in a later section.

To start a container, the WasmContainer object in OpenWhisk generates a new universally
unique identifier (uuid), without having to communicate with the Wasm executor at all. This is
possible because there is no setup for a Wasm container, that needs to happen ahead-of-time,
like network namespace creation for Docker containers. That shows an important aspect of
what constitues a WebAssembly container. In-memory, it is ultimately only represented by
the action’s code. No external operating system resource is used. It follows, that actual work
only happens in the endpoints, which are parameterized by the container id. /init is called
once by OpenWhisk per container to initialize the container with the module’s code. Although
different for each runtime, in general, this endpoint will do any work that can be frontloaded.
/run is invoked potentially many times, so any work that is not frontloaded would multiply
there. Once OpenWhisk decides to destroy the container, it does so through /destroy . Of
course, /init is the potential culprit for the cold start latency, so our focus is on reducing
even the amount of work this endpoint needs to handle.

3.5.1 Fast Cold Starts

In serverless platforms we can identify three important steps, in order for code to be executed.
Uploading the code to the platform, initializing the execution environment, and running it. The
latter two steps are already part of the execution path; they occur when an execution request
is actively waiting for the result to be returned. Thus, during initialization, the action should
already be well-optimized for execution such that as little preparation as possible is needed.
WebAssembly is a binary target format, however, not one that is ready for fast execution. It
can be interpreted right away – thus a small cold start time – but execution performance
will lag behind massively compared to native code, which is unacceptable. So compilation to
native code is essential for good runtime performance, but it also takes time for a module to be

11https://doc.rust-lang.org/std/marker/index.html

32

https://doc.rust-lang.org/std/marker/index.html

3.5. Executor Implementation

translated. Given this trade-off, it would seem that just-in-time compilation should be the best
model. In wasmtime , our JIT-runtime of choice, compilation of a simple, WASI-enabled module
(1,6 MB) still takes 35 milliseconds on our test machine (or 40 milliseconds when optimizing
for speed). This time represents 98% of the entire setup time, including every other part of
the runtime. Thus, unsurprisingly, the cold start is defined almost entirely by the compilation
phase. For comparison, the cold start time of the hello-world Docker image on the same
machine is 452 milliseconds. This number is roughly in line with the cold start times of AWS
Lambda or Google Cloud Function, that we have cited in Chapter 2. While the JIT cold start is
an order of magnitude faster than the startup times of Docker containers, it is still on the same
order of magnitude as the execution time of some actions. Given that the compilation phase
takes up such a big chunk of the overall time, it is the most obvious starting point for further
optimizations. And there is room for improvement.

In contrast to browsers, which receive JavaScript or WebAssembly just-in-time, and thus need
to compile it in the same manner, a serverless platform takes ownership of a module earlier.
When a user uploads a module, the platform has much more time to apply optimizations
to the module than on the execution path, thereby making it ready for a fast startup and
execution, solving the previously described dilemma. Thus, the key is to run the expensive
module creation ahead of the time of execution. It does not matter in this case, whether the
actual compilation strategy of the underlying runtime is JIT or AoT. It is obvious for AoT – the
code needs to be compiled ahead-of-time in its entirety, by definition. As we have seen, JIT
also has a cold start penalty and we can complete that step ahead-of-time, too. We refer to this
generically as precompilation. Once the module is precompiled, we can serialize it and store
it in the database. During initialization, all that is left to do is to deserialize the precompiled
bytes into an in-memory Module , which is a very fast operation. At the time of execution, the
module is ready to produce an instance and execution can start immediately.

Both wasmer and wamr support AoT compilation. wasmer in particular, allows us to leverage
LLVM for highly optimized native code to produce a shared object. The runtime loads this via
a fast dlopen call. wamr produces its own AoT format which it can deserialize at runtime and
achieve a fast startup as well. For wasmtime it is the same in all but the name. We can run the
relatively expensive module creation ahead-of-time, and serialize and store the result. Thus, all
the runtimes can support some form of precompilation.

3.5.2 Warm Starts

Even though the cold start of our executor is well-optimized with this technique, cold starting
for every single invocation would still be too expensive for sequential invocations. After all, the
init procedure still requires retrieving the module from the database and copying it to the
executor. We can save on that too, by simply taking advantage of OpenWhisk’s current design.
In order to adhere to it, we need to store the module between init and run . The advantage
of that is, of course, that after the initialization, run can be called again and again, without
having to go through any of the setup. This is how OpenWhisk works with Docker containers
already. After the initial cold start and first invocation, OpenWhisk pauses the container. If

33

3. Design

another subsequent request to the same action comes in, it unpauses the container and the
action invocation experiences a so-called warm start. This scenario skips the expensive cold
start and is much faster. After a threshold without any invocations – which defaults to ten
minutes – OpenWhisk calls the destroy function on the container, removing it entirely. Thus,
by adhering to OpenWhisk’s design, we have support for fast warm starts as well.

The advantage of keeping a module in the executor’s memory, is that it is already deserialized
and new instances can be instantiated from it immediately. An instance is the runtime’s
representation of a callable Wasm module. If a module is the equivalent of a Docker image,
then the instance is the running Docker container. Note that, unlike Docker-based OpenWhisk,
we do not keep instances (containers) in-memory, but only the modules (images). The cost of
instantiating an instance is negligible. On our testmachine it took, on average, 340microseconds
to set up a wasmtime instance and the parts needed for execution. This represents the overhead
on every warm invocation. Moreover, two instances can execute concurrently, even if the
module itself is not thread-safe, for instance when re-entrant execution would be unsafe.
Finally, implemented this way, it would also be safe to execute two requests from different
users, since instances are isolated from each other. They operate in their own memory space
and have their own WASI environment.

3.5.3 The WasmRuntime Abstraction

The Wasm executor is generic over the underlying WebAssembly runtime, such that we can
easily implement different ones and facilitate our comparison. To that end, we abstract the
common runtime tasks into a trait – essentially an interface in Rust’s terminology. It is shown
in Listing 2. The state of our executor can be any object that implements this trait. For each
Wasm runtime we have selected, we implement a wrapper, each of which implements the
WasmRuntime trait. All our wrapper implementations work in similar ways and differ only in
details. We describe the implementation for each trait method in the wrappers, while pointing
out the important differences between runtimes. Afterwards, we discuss alternatives.

Initialization

The executor decodes the base64 string given by OpenWhisk and unzips it, before calling
initialize with the result. The function initializes the container identified by the given
id. All wrappers store the code they are given in a thread-safe HashMap – provided by the
dashmap 12 library.

A note on WebAssembly runtime terminology first, based on wasmtime ’s13 and wasmer ’s14

documentation and the WebAssembly specification15. An engine is used for compiling and

12https://crates.io/crates/dashmap
13https://docs.rs/wasmtime
14https://docs.wasmer.io/integrations/examples/instance
15https://webassembly.github.io/spec/core/exec/runtime.html

34

https://crates.io/crates/dashmap
https://docs.rs/wasmtime
https://docs.wasmer.io/integrations/examples/instance
https://webassembly.github.io/spec/core/exec/runtime.html

3.5. Executor Implementation

pub trait WasmRuntime: Clone {
fn initialize(

&self,
container_id: String,
capabilities: ActionCapabilities,
module: Vec<u8>,

) -> anyhow ::Result<()>;

fn run(
&self,
container_id: &str,
parameters: serde_json ::Value,

) -> Result<Result<serde_json ::Value, serde_json ::Value>, anyhow ::Error>;

fn destroy(&self, container_id: &str);
}

Listing 2: The WasmRuntime abstraction that each of our Wasm runtime wrappers implements.
Note the previously mentioned Clone trait that is required for using a WasmRuntime object as
tide state. This is required here through the trait bound, which means the type implementing
this trait needs to also implement Clone .

managing modules. Recall that a module represents compiled WebAssembly code, similar to
a container image, and an instance is the callable instantiation of that code, i.e. the running
container. A store is necessary to hold on to memories, tables, functions and other auxiliary
data structures.

Wasmtime In wasmtime , we instantiate a single, global Engine when the executor starts,
which is then used to instantiate all Module s. The bytes passed through
initialize are deserialized into a Module – a fast operation – and then
stored in the internal HashMap. This is only possible because a Module is
thread-safe so the concurrent HashMap it is contained in can also be safely
shared across threads.

Wasmer In wasmer we also store an Engine globally, and instantiate a Store per
Module . In contrast to wasmtime , the Store is thread-safe and could be
stored globally as well. However, it holds on to the memory-heavy parts of the
Module and these would not be freed even if the Module was. Thus, until the
executor terminates, the Store would only grow in size. Like in wasmtime ,
the Module is thread-safe and thus enables our pre-creation optimization of
them in the first place.

35

3. Design

Wamr wamr is originally written in C, and we use wamr_sys 16 bindings to embed
it in Rust. Contrary to the other runtimes, a module in wamr is not thread-
safe. Thus, only the serialized bytes representing the module are stored in the
HashMap. It follows that the deserialization happens in every run call instead,
where the cost multiplies. Additionally, two functions need to be called glob-
ally for the runtime to be instantiated and torn down, wasm_runtime_init
and wasm_runtime_destroy , respectively. Our implementation requires each
runtime state to implement Clone . A common pattern in Rust (also used
by wasmtime and wasmer) is to implement the clone operation to produce a
shallow copy. Internally, these objects typically use Rust’s atomically reference-
counted smart pointer (Arc) to store a pointer to the actual object, in order to
safely share this object across threads. Then only a cheap copy of the Arc is
necessary to share the wrapper object across different threads, while having
access to the same underlying data. On each request, a clone of the runtime
is created and dropped at the end, i.e. its memory freed. Because of that, we
cannot call wasm_runtime_destroy in the wrapper’s Drop implementation,
since that would destroy the runtime too early. Instead, we use another in-
ternal Arc in the wrapper, which is instantiated with an object that calls the
initialization function when it is created, and destroys the context when it is
being dropped. Because the Arc will live as long as the runtime and only
calls the contained object’s drop function when all other references to the
runtime object itself have gone away, this implements the desired behavior.
This exemplifies that wamr ’s API is harder to use safely and correctly than the
idiomatic Rust APIs of the other runtimes, where memory- and thread-safey
properties are encoded in the type system and checked by the compiler.

Both wasmtime and wasmer underline the importance of the validity of the bytes given to
the respective deserialize methods. Unlike a Wasm module, the compilation artifacts can
not be validated in the same way since they already represent a compiled module. So they
have to be trusted even when the Wasm module they were produced from would not have to
be trusted. In our prototype, the users actually supply the compilation artifacts themselves, for
development convenience reasons. For an actual serverless framework making use of Wasm, it
would have to take ownership of the Wasm module and do the precompilation itself, in order
to trust the code.

Execution

All used runtimes support the WebAssembly System Interface. Recall that WASI follows a
capability-based security model, which allows for fine-grained control over what the module
has access to. Hence, building a so-called WASI context – named differently in each runtime

16https://crates.io/crates/wamr_sys

36

https://crates.io/crates/wamr_sys

3.5. Executor Implementation

– means setting up those capabilities. That might include writing parameters to stdin , re-
ceiving logs from stdout or setting environment variables and argv arguments. By default,
the module also has access to WASI APIs like random_get for high-quality randomness or
clock_time_get to access various clocks. WASI also controls on a per-file basis what direc-
tories the module has access to. Specifically, the module needs a preopened file descriptor
in order to access files. Our wrappers therefore have to open the files and pass them to the
module. However, what files a module should have access to is not definable in the OpenWhisk
protocol, since it does not make use of Docker’s host-to-guest mappings, so we need a way for
users to specify these capabilities. OpenWhisk actions can have optional annotations attached
to them, which are simple key-value pairs. We can use those to let users specify capabilities.
For instance, using the wsk cli:

wsk action create cache cache.zip --annotation dir "/tmp/cache"

Here a new action named cache is created from a file called cache.zip . A key-value pair
dir = /tmp/cache is attached, letting the executor know that the module should have access
to /tmp/cache . With someminimal code changes to OpenWhisk’s container abstraction, these
annotations are then passed to the executor during initialize . On the executor side, it is
passed to each runtime wrapper which can then act on that data. It would be easily possible for
a service provider to implement policies on top of it. Access could only be granted to the /tmp

directory in general; or a default cache directory /tmp/<container_id> could be created for
each container, where information can be cached and shared among instances of the container,
but only that container has access to it. As WASI is currently under heavy development and
does not, for example, specify any networking interfaces, the amount of capabilities we can
grant is limited. Our prototype implements directory access and a function that simulates an
HTTP GET request. The latter will be relevant for testing I/O-bound performance in Chapter 4.

The run method executes the module associated with the given container id and with the given
parameters as input. As required by OpenWhisk, the parameter is an object in JavaScript Object
Notation (JSON). The WebAssembly minimum-viable product (MVP), only supports integer
data types natively. Higher-level data types, like strings, often differ in their implementation
between languages, so a universal target format like Wasm cannot support a specific language’s
implementation, without shutting certain languages out or making it harder for them to be used.
Making Wasm modules interoperable – even those compiled from different source languages –
is an ongoing process with WebAssembly interface types17. The wasm-bindgen Rust library
already makes this process easy for JavaScript-WebAssembly interoperability. Unfortunately, it
does not work with any of the runtimes we use. Even if both our executor and the module are
written in Rust originally, passing a raw pointer to the JSON object to the module is not possible,
because WebAssembly is sandboxed and could not access the pointee. To work around this, we
require that the actions written for our executor use our library ow-wasm-action . Internally,
the library allocates a global buffer of bytes. It exports three functions to work with this buffer,

17https://hacks.mozilla.org/2019/08/webassembly-interface-types/

37

https://hacks.mozilla.org/2019/08/webassembly-interface-types/

3. Design

ow_wasm_action ::pass_json!(handler);

pub fn handler(json: serde_json ::Value)
 -> Result<serde_json ::Value, anyhow ::Error> {

let param1 = json
.get("param1")
.ok_or_else(|| anyhow ::anyhow!("Expected param1 to be present"))?
.as_i64()
.ok_or_else(|| anyhow ::anyhow!("Expected param1 to be an i64"))?;

let param2 = json
.get("param2")
.ok_or_else(|| anyhow ::anyhow!("Expected param2 to be present"))?
.as_i64()
.ok_or_else(|| anyhow ::anyhow!("Expected param2 to be an i64"))?;

Ok(serde_json ::json!({ "result": param1 + param2 }))
}

Listing 3: A simple add action in Rust that uses a macro from ow-wasm-action to pass the
received json to the handler and return the Result back to the runtime.

most notably one that returns a pointer to it. When the module is run, the runtime wrapper
serializes the JSON object as bytes and – via one of the exported functions – allocates enough
space in the buffer to store them. It then acquires the pointer to the global buffer and writes
the JSON bytes into it. The wrapper effectively writes into the memory region that the Wasm
module can read from; its linear memory. Since the module is unaware of the number of bytes
that have been written, the runtime passes that as its argv argument. Once the write process
is done, the instance’s main function – implemented in our library – is called. It reads the
bytes from the buffer and deserializes them into a JSON object. Then it calls the user-provided
handler function with that object. The return value from the handler is serialized back into the
buffer, from where the wrapper can read it, using a similar process. Conveniently, a developer
only has to implement a function that takes a JSON object and returns one in the success case;
an error otherwise. Thus, this crude method of passing parameters can be completely hidden
from action developers and only requires a single line of code to be included. A simple action
can be seen in Listing 3.

The action development process is visualized in Figure 3.3, which makes use of the binaryen 18

toolchain to optimize the Rust-produced WebAssembly. The ow-wasmtime-precompiler is
a simple wrapper around wasmtime ’s API, that creates a module from Wasm bytes, in turn
kicking off the internal compilation process. Once themodule is created, it is ready for execution.

18https://github.com/WebAssembly/binaryen

38

https://github.com/WebAssembly/binaryen

3.5. Executor Implementation

action.wasm

ow-wasm-action

wasm-opt
(binaryen)

ow-wasmtime-
precompiler

action-wasmer.zip

wamrc

PrecompilationDevelopment

wasmer

compile

action-
wasmtime.zip

action-wamr.zip

Figure 3.3: There are two phases in the action development. Our ow-wasm-action library
provides the abstraction to read the parameters the runtime has passed and to write the return
value. To that end, it uses serde_json , a (de)serialization library to read and write the JSON
objects. Afterwards, wasm-opt runs an optimization pass on the produced WebAssembly, since
not all runtimes do so themselves. Depending on what runtime is compiled into the executor,
the corresponding precompiler needs to be used. For wasmtime , we have written the small
ow-wasmtime-precompiler program that precompiles the Wasm code into a format ready for
execution, while wamrc and wasmer compile can be used for the others. Finally, the resulting
precompiled binary is zipped which reduces the transmission size and instructs the OpenWhisk
cli to treat it as binary data. The zip file is then ready to be uploaded to OpenWhisk.

At this point, we serialize it to a file and zip it. This process precompiles the module for the
current host architecture. wamrc and wasmer compile can also take a target argument to
precompile for a different host, e.g. a Raspberry Pi with the aarch64 ISA. However, as of
version 0.26 , the wasmtime command line interface (cli) has also gained similar capabilities.

The creation of the WASI context as well as the actual execution is slightly different for each
runtime.

Wasmtime The wasmtime runtime, as of version 0.23 , uses cap-std , a capability based
implementation with a similar API as the Rust standard library. We can con-
struct its Dir type and use it while building a WasiCtxBuilder , ultimately
yielding a WasiCtx . The context is linked with the module using the runtime’s
Linker , which is responsible for resolving the imports the module needs, WASI
or otherwise. Hence, we can also use it to provide functions as imports to the
modules. To execute, we need to create a Store , which requires a reference
to an Engine . Since one was instantiated globally, we can simply refer to it.

39

3. Design

The Store in turn is needed to instantiate an Instance from the Module
we deserialized during initialization. The Store is neither thread-safe nor
meant to be long-lived, according to the documentation. Thus, the Store
and the Instance are instantiated per-request, in each /run invocation, and
discarded afterwards. It ensures that the memory allocated in the Store
does not stick around for the entire lifecycle of the Module . Evidently, this
runtime’s API is a very good fit for our use case.

Wasmer In wasmer , we build up a WasiEnv with a similar API as wasmtime ’s, in-
cluding directory access. To provide functions to the module, the resulting
ImportObject can be combined with another one, by implementing a cus-
tom Resolver . It simply maps the name of an import to a function, in our
case. The module combined with the Resolver then produces an Instance .
In contrast to wasmtime , the necessary Store was already created in the
initialize method, so the memory allocated in it does stick around until
the entire container is removed.

Wamr wamr ’s API is lower-level and less ergonomic compared to the other runtimes,
due to it being a C rather than an idiomatic Rust API. On every run invocation,
we need to load the runtime, instantiate the module from the precompiled
bytes and create an instance from it as well as create an execution environment.
Only then can we start execution. Due to API limitations, we cannot frontload
meaningful work to the init method, so all of it needs to happen for every
invocation. While this costs performance, it still implements what is required.
However, other parts of wamr ’s API are real restrictions. One is that function
imports for WebAssembly modules need to be specified on – what wamr calls
– the runtime, which is the equivalent of the Engine type in the other Wasm
runtimes. Since it is global and instantiated only once, we can not define
different imports for different modules, only one set of imports for all modules.
While we do not need this flexibility for our examples, it may be desireable for
a full-featured Wasm executor, e.g. only modules where the developer has set
the permissions accordingly can work with networking functions. The other
Wasm runtimes allow us to specify imports per instance. The API of wamr is
the least appropriate for our use case.

In summary, run looks up the previously stored module or its bytes by the container id, creates
a WASI context with the associated capabilities and potential imports, passes the parameters
and calls the module.

Cleanup

Finally, the destroy function removes the container, which simply means freeing the memory
taken up by the module. This is fast and thread-safe, since each container manages its own

40

3.5. Executor Implementation

Wasm module. Once OpenWhisk has decided to destroy the container, it will synchronize
internally to not call run on it again. An overview of the entire executor workflow can be seen
in Figure 3.4.

destroy(id)

ExecutorOpenWhisk

HashMap

insert module

and

capabilities

deserialize

module_bytes
to module

capabilities module

lookup by id

instance

instantiate

WASI context

transform

write

parameters

invoke main

return result

remove by id

run(id,
parameters)

init(id,
 capabilities,

 module_bytes)

read result

Figure 3.4: Overview of the executor architecture. init decodes the received bytes using
base64 and unzips the result. From there, they are deserialized back into a Module instance,
in the case of wasmtime and wasmer . The module and capabilities are then stored in the
HashMap. When a run request comes in, the module and capabilities are looked up. The
capabilities are transformed to aWASI context, which is used to instantiate an instance, together
with the module. The parameters for this run request are serialized to JSON and written
into the instance’s memory. Calling the main function in turn invokes the actual developer-
provided handler function. The read result is returned to OpenWhisk. A destroy request
simply translates to a remove operation on the HashMap. Note that this figure is accurate for
wasmtime and wasmer , but not entirely for wamr . The latter runtime’s module creation is
slightly different, as explained above.

41

3. Design

3.5.4 Enabling Concurrency

In order for our executor to handle requests to these endpoints concurrently, we use Rust’s
async features. It is a programming model that »lets you run a large number of concurrent
tasks on a small number of OS threads« [Dev21b]. With this model, a large number of I/O-
bound tasks can be handled with less resources than a thread-based model could. Rust’s async
model works with Future s – similar to Promise s in JavaScript – which represent values that
have not yet been computed. Contrary to Promise s however, Rust’s Future s are lazy: They
do nothing unless actively polled. This task falls to async runtimes, of which async-std
provides one. In async-std , the unit of execution is a Task , which is similar to a Thread ,
except it is driven to completion by the user space runtime instead of the OS. Many of those
tasks are executed on the same thread, and by default, a Thread per logical CPU core is
spawned. Thus we have M · N tasks in total, where M is the number of tasks per thread and
N the number of logical CPU cores. Because multiple Task s are multiplexed onto one thread,
it should not do a blocking or long-running operation, like reading from a file via the standard
library’s synchronous I/O functions. Instead, it should use the async version of that method,
from async-std , which does not block the thread. Otherwise, all M − 1 tasks, which are
executed on the same thread will be blocked, even though they may be able to make progress.
Note that we could still process N requests concurrently, even if tasks block, but that does not
scale as well for I/O-bound tasks.

The question then becomes, what the execution of WebAssembly is bound by. That mostly
depends on the WebAssembly module. If the module calculates a large prime number, executing
it is CPU-bound; but if it makes an I/O-bound HTTP request, then so is the task running the
module. We have explored the typical serverless workload in detail in Chapter 2. Most definitely,
I/O-bound functions are a primary type of workload for serverless due to their frequent usage
of external services. CPU-intensive functions on the other hand, are less common, but still need
to be accommodated, if only to expand the range of applications that can leverage serverless.

Using this programming model enables us to potentially handle many concurent requests from
OpenWhisk. However, since we embed Wasm runtimes and – at the time of implementation
– calling WebAssembly functions is not async , they block the thread they are running on,
until the module has finished execution. If the module’s execution is CPU-bound, it essentially
blocks the other Task s on the thread from making progress until it is finished. This is less of an
issue if we only have CPU-bound modules, given that no more work can be done concurrently
than the CPU has logical cores. In a more realistic, mixed workload scenario, however, modules
hogging the CPU could prevent I/O-bound tasks from concurrently making progress, even
though they hardly need CPU time. In both cases, only N Wasm modules can be executed
concurrently, directly corresponding to the number of available threads. That means, we cannot
execute modules on the same thread concurrently and that, essentially, both workload types
are not well suited for this execution model. Since one of the appealing offerings of serverless
frameworks is their scalability, we clearly need a way to handle many more requests, even if
they block.

To let other async functions on the same thread make progress, while one executes the module,

42

3.5. Executor Implementation

we can push the entire execution onto a thread pool. The function then has the simple job to
asynchronously wait for that execution to finish and collect the result. That allows the other
functions to process more requests in the meantime. Unfortunately, this effectively corresponds
to a thread-based model where fewer I/O-bound tasks can be handled than possible with an
asynchronous task model.

Recall thatWebAssembly itself does not interact with the system, so it could not do blocking I/O
without its (WASI) imports. If we could provide these imports as asynchronous functions, the
async runtime that drives our executor could also drive them to completion. In fact, the Rust
library implementing WASI capabilities wasi-cap-std-sync 19 notes that an async version
is being worked on, as of April 2021. But until these APIs become available, we have to work
around that with the thread pool.

To test the whether the thread pool model is able to handle more requests than blocking in the
threads directly, we run two short experiments.

1. CPU-bound: Calculating a large prime number.

2. Network I/O-bound: Making a long-running (1 second) HTTP request.

Our test machine has 8 logical CPU cores, resulting in 8 threads being started for the async-std
runtime. We thus send 16 concurrent requests to be able to see the potential blocking in the
result. The first experiment showed no difference in the total execution time between the
default and thread pool model. As we would expect, in the default model the CPU-bound
task finishes the first 8 requests, before starting the second set. The execution in a thread
pool executes all 16 requests concurrently, but each took roughly twice as long, resulting in
no significant difference between the total execution time. The default model operates more
along the first-come, first-serve principle, where an early request will also get a response more
quickly. In this simplified example, where all workloads are CPU-bound, this is preferable,
since the first 8 requests get their responses sooner.

The result of the second experiment is shown in Figure 3.5. In the default model, the first 8
requests block the other 8, while they wait for the HTTP request to finish, resulting in roughly
2 seconds of total execution time. Unsurprisingly, the thread pool model finishes in half the
total execution time, since it can handle all 16 requests simultaneously, due to using a new
thread from the pool for each blocking operation.

Both models seem to have a workload better suited to them. However, in a real-world, mixed-
workload scenario, a long-running, CPU-bound function may prevent another I/O-bound one
from initializing its computationally cheap request. A mixed scenario may therefore also be
better served by the thread pool model.

In Figure 3.6, a mixed scenario is run, where 16 CPU-bound and 16 I/O-bound requests are sent
concurrently. In the default model, the CPU-bound requests finish in about one third of the

19https://docs.rs/wasi-cap-std-sync

43

https://docs.rs/wasi-cap-std-sync

3. Design

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0

5

10

15

re
qu

es
t
nu

m
be

r
async-std default execution model

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time (seconds)

0

5

10

15

re
qu

es
t
nu

m
be

r

async-std thread pool execution model

Figure 3.5: Executing blocking Wasm workloads under the async-std default model with 8
threads, compared with running each in a thread from a pool.

time they take under the thread pool model. This is again due to more requests being processed
concurrently in the latter model, and is also why its standard deviation is slightly higher. For
I/O-bound workloads, there is a slight advantage for the default model. However, in the context
of the plot on the right side, the thread pool model is able to handle more requests per second
in general, but specifically excels at the I/O-bound ones. There is an inherent trade-off between
serving a request as soon as possible, and the time it takes to finish serving it. It depends
on the expected workload, which model should be used. Based on our research in Chapter 2,
we would expect I/O-bound modules to be prevalent, so we use the thread pool model going
forward.

44

3.5. Executor Implementation

Compute-bound I/O-bound
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ti
m
e
(s
ec

on
ds

)

Request Duration

Default
Thread pool

Default Thread Pool
0

5

10

15

20

nu
m
be

r
of

re
qu

es
ts

Requests per second

Figure 3.6: The average request duration and the average amount of requests finished per
second under the default and thread pool execution model, sampled over 50 runs.

3.5.5 Implementation Alternatives

Instead of caching modules, we may wish to cache instances. The case for reusing instances
is to avoid the costly setup in the action itself, like connection pools to external resources or
to avoid rebuilding a cache on every request. We need to manage instances in that case, i.e.
we need a pool of instances and a management system around it. When a new request comes
in, we would ideally like to reuse an existing instance. That requires synchronizing with other
threads to decide which thread gets to reuse an instance and which needs to create a new
one. We would need per-instance synchronization to check whether an instance is currently in
use or usable. It is questionable whether the synchronization overhead would be less costly
than always creating a new instance, in particular because creating instances is a relatively
cheap operation. Furthermore, with a new instance per request, we have per request isolation
and fully stateless execution – something that the action developer can rely upon. For these

45

3. Design

reasons we decided not to implement it.

As seen in Figure 3.4, a WASI context is created per run invocation. For example, if a module
needs access to a file, creating the context requires opening file descriptors. Similarly, with a
future networking API in WASI, this might require invoking more system calls. Frontloading
this resource acquisition as much as possible can have net performance benefits. In particular,
we should pre-create the WASI context, if possible. In wasmtime this is not possible, because
the WasiCtx is not thread-safe. In wasmer on other hand, the WasiEnv is thread-safe and
can be cheaply cloned to send across threads. Our current implementation needs one context
per instance. That is due to the way we pass parameters to instances. This is not a fundamental
limitation and could be done differently, which in turn would allow the wasmer wrapper to,
for example, lazily create one WasiEnv per action the first time it is needed, and then reuse it
for all future invocations of that action.

One potential inefficiency of our design is that our executor stores every container’s module
once. If OpenWhisk decides to create two containers A and B , both containing the same
module M , then M will take upmemory twice. One reason for that design is that in OpenWhisk
vanilla, containers are completely separated from each other and no such optimization would
be possible. Our executor is a more centralized solution and would allow for this optimization in
the first place. Currently, we trade memory for speed and store the module per container. Thus,
adding or removing a container is a fast insert or remove operation on the HashMap. Internally,
the executor uses a thread-safe HashMap to store the modules and let many tasks or threads
work with it simultaneously. A store-modules-once approach would require a global lock on the
HashMap. During initialization, the executor needs to check whether the module already exists
in the HashMap and if it does, increase its atomic reference count. This is already a critical
section, since without synchronization, a concurrent destroy operation may have removed the
module between the existence check and the increment. Consequently, this requires a global
lock on the HashMap to avoid race conditions. This is probably not a performance issue, since
lock contention is unlikely given that the average time between container starts or removals is
much longer than the amount of time the lock needs to be held.

The question then is, whether it would help alleviate resource waste, that is, how often are
multiple containers for the same action started? This primarily happens under bursty or
batch workloads. Outside of such workloads, multiple containers with the same module
are less likely to be started. But as we have seen in Chapter 2, an analysis of open-source
serverless applications showed 84% of them having bursty workloads [Eis+21a]. The likelihood
of receiving concurrent requests for the same action and in turn having to create multiple
containers is therefore quite high. Hence, it seems implementing this optimization makes sense.
However, OpenWhisk itself already has the potential to eliminate the waste with its per-action
concurrency limit. This limit states how many concurrent invocations a container can handle at
most. If we increase this value beyond its default of one, then OpenWhisk will send invocation
requests for the same action to the same container, up to that limit, and without having to
start a new container thereby duplicating the module. In particular, Figure 3.7 shows how a
module can be reused in the same container – skipping the creation of a separate container
entirely. Making use of this limit can thus be very important for performance and to avoid

46

3.5. Executor Implementation

instantiate

POST /1/init/

POST /1/run/

POST /1/run/

POST /1/destroy/

ExecutorOpenWhisk

instantiate

Instance 2

Instance 1

Wasm
Module 1

return

return

Figure 3.7: An example of a container’s lifecycle when OpenWhisk’s concurrency limit is set to
a value greater one for that action. Note that a container is only represented in-memory by its
module and instances, which is why there is no explicit »container« label in the figure. The
container is initialized with a module by OpenWhisk’s call to /init . Every /run request
to the same container id spawns a new instance of a WebAssembly module. In particular,
two concurrent requests to /run can be executed concurrently by the same container. In
that case, the instances are instantiated from the same module. The instances are the actual
»containers« here, since they are the ones who are isolated from each other and the host.
They are short-lived and never reused to guarantee that isolation, in other words, there is a
one-to-one relationship between /run requests and instances. The Wasm module will stay in
memory until OpenWhisk’s explicit call to /destroy , which occurs after a container has been
idle for some threshold time.

47

3. Design

resource waste. With a concurrency limit of c, up to c requests could be handled by a single
container. If set appropriately for the underlying hardware and workload, no two containers
need to be started on the same host and thus no resource waste would be necessary. Now,
whether developers can be expected to set this limit properly is debatable. After all, their lack
of knowledge about the hardware is rather the point, so this limit would perhaps better be set
by the serverless operator. Overall, because of these considerations we decided adding this
executor-internal optimization was not necessary.

48

CHAPTER 4
Evaluation

In this chapter, we evaluate our WebAssembly executor by comparing it to OpenWhisk vanilla.
First, we discuss and define the types of workloads we use in our experiments. Then we go
into details of our methodology, the experimental setup, which metrics we measure and what
hardware we deploy on. All that will lead to answers for our research questions.

4.1 · Methodology

4.1.1 Goals

Recall our research questions.

1. By how much can WebAssembly runtimes alleviate the cold start latency?

2. How do the performance characteristics of the WebAssembly and Docker container
runtimes differ?

3. What are the resource costs for keeping containers warm in both container runtimes?

4. Which WebAssembly runtime is the most suitable for use on edge devices?

5. How suitable is WebAssembly for serverless execution?

4.1.2 Workload Types

In Chapter 2, we described the serverless workload in detail, which guided decisions in our im-
plementation. Specifically, we already used that research to get an idea about what concurrency
model may be a better fit for our executor.

49

4. Evaluation

This research workload represents the current cloud workload and may or may not be trans-
ferable to workloads at the edge. Because of that, we also take some examples of visionary
and potential use cases into account and infer scenarios, i.e. the order of cold starts and warm
starts, as well as workload types, i.e. whether functions are CPU- or I/O-bound. That includes
both serverless edge workloads and latency-sensitive ones.

Vital Signs
Analysis

Nastic et al. introduce measuring a patient’s vital signs with wearable sensors
during a situation of crisis [Nas+17]. Since lives are at stake, decisions must be
made quickly. The scenario is both a latency-critical and an edge computing
application. It serves as an example, where a serverless platform on edge
computers can provide lower latency than sending the data to the cloud. Thus,
part of the latency is reduced by moving the computation physically closer to
the sensor. However, the second important factor for latency is the platform’s
execution time. When a sensor comes online and sends its first request, the
execution suffers from a cold start. Once sensors are online, they need to
analyze data in real time and continuously. Therefore, when the cold start
happens, the platform may already be under load from other requests, and
there may be concurrent cold starts. This is a scenario where high performance
and efficient usage of the limited resources is required, and one where the
same functions are called repeatedly – warm starts. The workload itself is
data analytics, but not described in more detail. We classify this as primarily
CPU-bound, because we can assume it involves data preprocessing, statistical
analysis and perhaps even machine learning inference.

Edge AI Rausch et al. describe a motivational use case for AI at the serverless edge.
A personal bio sensor measures blood sugar levels and sends it to an edge
device, which refines a pre-trained model with that data and serves the model
for inferencing [Rau+19]. The workload for this type of serverless function
needs a significant amount of CPU-time for the machine learning tasks but
also writes and reads parts of the model to and from disk. We classify this
as both CPU- and file I/O-bound. Considering that measuring blood sugar
levels is sufficient in greater intervals, e.g. 10 minutes, or whenever the user
does a manual measurement, each of those would spawn a function that does
the analysis and training, but could be discarded once it is finished. That is,
keeping the function warm would be unnecessary and wasting resources. If
the user actively took the measurement and waits for the analysis results, a
low latency is required for a good quality of experience. Thus, the cold start of
the analysis function should be as short as possible.

Augmented
Reality

Huang, Lin, and Lee implemented a mobile augmented reality (AR) system
that analyzes images of book spines locally, e.g. on a smartphone, and then
sends the features to the cloud to find a match in a database [HLL12]. Baresi
and Filgueira Mendonça propose to offload the image recognition task to a
more powerful edge device, to save on battery on the hosting device [BF19]. AR

50

4.1. Methodology

applications require a low latency to provide a good user experience. Offloading
such recognition tasks to nearby and more powerful edge devices presupposes
their capability to execute them at high speed. This is a scenario where a
serverless platform would receive a high number of concurrent CPU-bound
requests.

APIs According to Eismann et al. – who conducted a manual analysis of serverless
applications – 28% of their analyzed applications were APIs [Eis+21b]. Even
with today’s cold start latency, developers are already using serverless for user-
facing applications, where latency is rather important. However, as Leitner et al.
noted in their interviews with practitioners, many of them voiced concerns
about the high latency associated with cold starts [Lei+19]. If the latency could
be reduced significantly, even the APIs of latency-sensitive applications can be
built on serverless. A useful API is typically accessing or modifying state. Since
serverless functions by themselves are stateless, they need to communicate
with other services such as databases, event buses and logging services. This
composition requires many network I/O-bound calls and is usually light on the
CPU, since the function spends most of its time waiting for I/O to complete.

We infer two workloads from these, while also taking our previous research into account.
Both CPU- and network I/O-bound workloads are a primary type that ought to be handled
well by a serverless platform. Some limitations apply due to WASI’s immaturity or serverless
idiosyncrasies. In particular, to model a full machine learning example, we should access an
already trained model and run predictions on it. However, due to the lack of proper networking
in WASI, we cannot retrieve it from an external service. Due to OpenWhisk vanilla using Docker
containers, storing the model on disk would require granting each container access to the
model’s path on the host, which is not officially supported by the platform. Since file and
network I/O are perceived similarly by the waiting function, we can focus on simulating one of
these, which is going to be network I/O due to its prevalence.

We write the test actions in Rust and compile them to wasm32-wasi and aarch64 or x86_64
respectively, depending on whether we test a WebAssembly or Docker executor and which
hardware we test on. This ensures that our results are not distorted by side effects from two
different implementations in separate languages. In order to execute the native binary in
OpenWhisk we use its blackbox feature. It is implemented by the dockerskeleton image,
which lets us execute any action that adheres to a JSON-in, JSON-out protocol. We could
also use the official Rust support by OpenWhisk, however, that takes a Rust source file and
compiles it during the initialization phase – massively increasing the cold start latency. We
believe using the blackbox version makes for a fair comparison between both container runtime
types, since it measures the startup time of the respective container implementations, making it
much more comparable to other serverless platforms. Although interpreted languages, such as
JavaScript or Python, make up the overwhelming share of serverless languages, we use natively
compiled actions to compare the precompiled WebAssembly to this optimum in performance.
To also give an idea how performance compares to these prevalent languages, we also write

51

4. Evaluation

an experimental action in a language, which compiles to both JavaScript and WebAssembly.
OpenWhisk makes its Docker runtime images available for the x86_64 architecture only, so
we need to build this image for aarch64 1 first, in order to execute on a Raspberry Pi. The
concrete implementations of our evaluation actions are the following programs.

CPU-bound For this workload, we repeatedly hash a bytestring in a loop using the blake3 2

algorithm. This is a convenient choice since its reference implementation is
written in Rust. Hashing is CPU-bound and free from system calls, so it is a
good candidate for this workload type. We choose the number of iterations such
that the completion takes roughly 100 ms in a native binary on the respective
hardware, in order to have a non-trivial amount of work to be done for each
invocation – significantly more than what OpenWhisk needs for its internal
scheduling.

I/O-bound For this workload, we want to measure the effect of a blocking operation,
such as an HTTP request. However, due to the lack of networking in WASI,
we instead use the sleep system call. In WebAssembly this is implemented
through capabilities. The module declares an import called http.get , which
the WebAssembly executor provides. It is a function compiled into the executor,
which blocks for exactly 300 ms, so the perceived effect of this function is the
same as waiting for I/O completion.

4.1.3 Hardware Classes

Based on the introduced scenarios, we can also infer what types of hardware to evaluate our
system on. The Vital Signs and Edge Analysis scenarios both work with lower end devices, like
single board computers (SBC) or smartphones. For timely image recognition in the Augmented
Reality example on the other hand, a more powerful machine would be required. The API
example is more independent of the hardware and could run anywhere from SBCs to the cloud.
Overall, SBCs can be considered characteristic of these edge computing scenarios and further
ones include urban sensing, industry 4.0 and vehicular networks [Rau+20]. However, other
configurations exist, for instance in edge data centers, where more powerful hardware can be
found. Accordingly, we use a Raspberry Pi as an exemplary SBC and a server-grade machine to
represent more powerful devices possibly located at the edge or in cloud data centers.

4.1.4 Setup

We want to measure the cold start latency and action execution time across all our evaluations.
To that end, we utilize OpenWhisk’s activation record, which is a collection of data resulting
from each action invocation. Recall that OpenWhisk either initializes and runs the action,

1https://hub.docker.com/r/pgackst/dockerskeleton
2https://crates.io/crates/blake3

52

https://hub.docker.com/r/pgackst/dockerskeleton
https://crates.io/crates/blake3

4.1. Methodology

in the case of a cold start, or skips the initialization and runs it in a warm container. Each
activation record contains a waitTime annotation, which is the time between the arrival of the
request and the provisioning of a container. For Docker this means creating and starting the
container. In WebAssembly executors, no equivalent operation exists, such that the waitTime
will only correspond to the OpenWhisk internal overhead. Rather, the WebAssembly container
is created during function initialization, which is not included in waitTime , but recorded as a
separate annotation: initTime . Thus, for a fair comparison between both container runtimes,
we define the cold start time as waitTime + initTime . Measured this way, the cold start
time is simply the time between OpenWhisk receiving the request and the container being
ready for execution, independent of the underlying container runtime. Since both times are
part of the latency the user perceives, we believe this to be a meaningful measurement. It is
important to note that this allows for a fair comparison in relative terms, that is, the recorded
cold start times are not made up entirely of the container runtimes’ startup cost, but also of
OpenWhisk internal operations, which may account for a significant portion. This may limit
the comparability to cold start measurements from other research. To facilitate this comparison,
we provide the pure startup time, i.e. only initTime of WebAssembly executors as well. In
Figure 4.1, we show a visual representation of what constitutes cold start latency and the
request latency perceived by the caller, which is the amount of time from which throughput
will be calculated.

Container
provisioning &
initialization

Action Execution

Request Receival Action ExitAction Entry

Wall Clock Time

waitTime + initTime
= Cold Start Time

Caller-perceived
Request Latency

Request Start Request End

Figure 4.1: The two time measurements we use to evaluate the system’s performance.

There are a two papers which describe their approach to measuring serverless performance in
more detail, which we use as a basis for our evaluation.

• McGrath and Brenner use concurrency tests to evaluate a platform’s ability to scale
[MB17]. The concurrency test starts by issuing a request to the platform and reissues it
as soon as it completes. At a fixed interval, it adds another request up to an upper bound.

53

4. Evaluation

In this manner, the load increases over time until a plateau is reached, where an increase
in requests no longer increases the number of completed requests per time unit.

• Hall and Ramachandran characterize access patterns to serverless functions based on
a real-world scenario. They describe three different patterns: Non-concurrent requests
from a single client; multiple clients making a single request, possibly concurrent and
multiple clients making multiple requests, also possibly concurrent [HR19].

Based on these, we devise the following experiments, building on the methodologies of McGrath
and Brenner and Hall and Ramachandran to measure cold start times and throughput.

• To measure cold start times we first configure OpenWhisk’s deallocation time as 10
seconds. We can then send requests at intervals exceeding 10 seconds to always trigger
cold starts. In order to measure the effect of concurrency on cold starts, we send i
concurrent requests, where i iterates through the set {1, ..., N} and N is an upper bound
we determine during the tests. After each iteration, we wait for OpenWhisk to destroy
all containers before continuing. That results in exactly i concurrent cold starts on each
iteration. This measurement will aid in answering RQ1.

• To evaluate the performance of the systems, we run concurrent requests under various
workloads consisting of either CPU- or I/O-bound actions, or both. In the mixed scenario,
we use the approach byMcGrath and Brenner in their concurrency test, and pickworkload
types at random. This is to ensure that we evaluate the system for both types and close
to a real-world scenario. It is also similar to the approach of Hall and Ramachandran, in
that we have multiple concurrent requests but multiple clients are replaced by diverse
workload types. The isolated experiments help us evaluate the pure performance of the
respective workload types. Finally, we run a workload based on research data introduced
in Chapter 2, which simulates that of a cloud provider. We go into more detail for each
measurement in the respective sections. These experiments will help us answer RQ2.

• The third experiment aims to evaluate what the resource costs of actions are, specifically
their code size and the amount of memory they consume while being held in-memory,
ready for execution. We use the Docker API to measure each container’s memory
footprint and measure the allocated memory of the WebAssembly executor process to
infer the costs for WebAssembly containers. This measurement supports the answer to
RQ3.

Finally, all measurements and the experience of the design phase will lead us to a conclusion
on RQ4 and RQ5. Our test procedure follows this pattern:

1. Based on the latest available stable release of OpenWhisk, which is 1.0.0 , compile
the standalone version in our modified Wasm variant, as well as the unmodified vanilla
version.

54

4.2. Cold Start

2. Start the OpenWhisk variant under test on the test machine.

3. Use the local wsk command line tool to create the test action(s).

4. From a separate machine, start the test procedure, which will send requests to the test
machine.

4.1.5 Deployment

We run our evaluation on a resource-constrained edge device as well as an x86_64 server-class
machine. The edge device is a Raspberry Pi Model 3B, which has 1 GB of RAM and is running
the latest version of the 64-bit Raspberry Pi OS (version 2020-08-20). We are using the 64-bit
version, because the wasmtime runtime cannot be compiled for the 32-bit arm architecture.
The server has an Intel® Xeon® E3-1231 v3 (3.40 GHz) server-grade CPU with 4 physical cores
and 8 logical threads. Mass storage is a Samsung SSD 850 EVO – which is where Docker images
are stored and loaded from – and it has 8 GB of RAM and is running Ubuntu 20.04.2 LTS.

Due to difficulties in deploying OpenWhisk on the Raspberry Pi with Kubernetes and ansible,
we use the standalone Java version for evaluation. The standalone version uses OpenWhisk’s
lean components for internal messaging and load balancing. These are components written
specifically for deployment on resource-constrained devices. Since we are not benchmarking
OpenWhisk itself, but rather the underlying container technology, we do not believe this to be
a threat to validity.

4.2 · Cold Start

During testing, various issues arose that we want to discuss, in order to give context about the
deployment process. The first version of the test created our CPU-bound test action, called
hash , and then ran concurrent requests against OpenWhisk. In the result we noticed that for
5 and more concurrent requests, there were only 4 cold starts, independent of the underlying
container runtime. It turned out that OpenWhisk would only create 4 containers and let other
requests wait until one of the currently executing ones finished, so it could reuse the container.
This is a fair optimization, but it does not let us test how 5 or more cold starts actually affect
each other. So, instead of creating just one action, we create N actions with different names but
the same code. OpenWhisk will treat these as different actions and execute them in separate
containers accordingly. However, it will still only allocate 4 containers at a time, something
that does not appear to be configurable, waiting for one of them to complete before removing it
and starting the next. Thus, the performance of the container removal operation also becomes
important, as it blocks the provisioning of the next. It is implicitly part of the cold start time as
we define it, since a container that needs to wait due to a slow remove operation from another
container will have a higher waitTime .

OpenWhisk vanilla showed further issues in its default configuration. On every container start,
it executes a Docker pull operation even if the image was locally present, which meant checking

55

4. Evaluation

2 3 4 5 6 7 8 9 10
Number of Concurrent Requests

1

10

100

1000
C
ol
d
St

ar
t
Ti
m
e
(s
)

Raspberry Pi: Cold Start Test

docker
wasmtime
wasmer
wamr

Figure 4.2: The cold start time with a CPU-bound workload on a Raspberry Pi with both Docker
and Wasm-based container runtimes. Note that the scale is logarithmic rather than linear.

if the local image was up to date with the remote version, resulting in a higher waitTime
than necessary. Therefore, we turned this behavior off, since it is not an inherent part of the
container startup, which improved cold start times.

With two running Docker containers, OpenWhisk starts to approach the limits of the Raspberry
Pi’s memory. If OpenWhisk decides to start a third container, the system runs out of memory
and freezes. Only after increasing the swap memory from the default 100 MiB to 1024 MiB
were we able to test up to 6 concurrent cold starts. This is reflected in Figure 4.2 – where we
plotted the result of the cold start test – with the Docker runtime having orders of magnitude
higher cold start latencies than any of the Wasm executors. At 5 and 6 concurrent requests,
the OpenWhisk logs showed Docker commands timing out and the testing time became
unreasonably long – as reflected in the figure – which is why we stopped testing at that point.

Even at 2 concurrent requests, the Wasm executors have a cold start time of around one second,
increasing with more requests. wasmtime has the most consistent behavior, followed by
wamr and wasmer . Overall, the runtimes are similar in their startup performance, especially
wasmtime and wamr , even though they are written in different languages and use different
compilation strategies. The Wasm executors have, on average, less than 0.5% the cold start
time of Docker.

For comparison, the cold start times on our x86_64 server machine are plotted in Figure 4.3.

56

4.2. Cold Start

2 3 4 5 6 7 8 9 10
Number of Concurrent Requests

100

1000

C
ol
d
St

ar
t
Ti
m
e
(m

s)

Server: Cold Start Test

docker
wasmtime
wasmer
wamr

Figure 4.3: The cold start time with a CPU-bound workload on a server machine with both
Docker and Wasm-based container runtimes. The Docker numbers fall between 869 ms and
2873 ms, while the numbers for WebAssembly executors range from 47 ms to 180 ms.

The relative differences are similar to the Raspberry Pi. In particular, the Wasm executors
behave more predictably on both machines. Docker cold start latencies suffer under rising
concurrency and vary muchmore. The average reduction in cold start time is 94% for wasmtime
and wamr and 93% for wasmer .

These comparisons give a good holistic picture of the performance of both runtimes in the
OpenWhisk context. However, because the measurements include other OpenWhisk specifics,
they are less useful for a general container runtime comparison. Thus, we plotted initTime
for the Wasm executors in Figure 4.4. This time represents the duration of the /init endpoint
on the executor. It provides comparability to serverless platforms other than OpenWhisk since
it isolates the overhead introduced only by the executor. It also shows the Wasm executors
in more detail – providing a clearer picture for the evaluation among them, since the Docker
runtime distorted the original graph to a large degree.

Independent of the hardware, wasmer is about 2× slower than wasmtime and 3× slower
than wamr . At initialization time, the runtime receives the bytes and deserializes them into
a Module , similar to wasmtime . However, since we use the NativeEngine in wasmer and
it needs to open the shared object via dlopen , the bytes need to be written to a temporary
file first. We do not expect this accounts for all of the differences seen, however. The runtime
seems to have an inherently higher cost for deserialization and is slightly less consistent in its

57

4. Evaluation

2 3 4 5 6 7 8 9 10
Number of Concurrent Requests

100

200

300

400
C
ol
d
St

ar
t
Ti
m
e
(m

s)
Raspberry Pi: Cold Start Test

wasmer
wasmtime
wamr

2 3 4 5 6 7 8 9 10
Number of Concurrent Requests

5

10

15

20

C
ol
d
St

ar
t
Ti
m
e
(m

s)

Server: Cold Start Test

wasmer
wasmtime
wamr

Figure 4.4: The cold start time with a CPU-bound workload on the Raspberry Pi only for the
Wasm executors and with a confidence interval of 95%.

performance, based on the confidence intervals.

4.3 · Throughput

4.3.1 Mixed Workload

In the previous cold start test it became apparent that running OpenWhisk vanilla with Docker
on the Raspberry Pi is challenging. Because OpenWhisk runs four containers under heavy
load, it puts too much strain on our test edge device. Thus, we make use of the previously
introduced concurrency limit that we can set for each action. We set the limit to 10, such that
10 actions can be executed concurrently in the same container. With this setup, we can run the

58

4.3. Throughput

5 10 15 20 25 30
Number of Concurrent Requests

20

40

Th
ro

ug
hp

ut
(r
eq

/s
ec

)

Raspberry Pi: Mixed Workload

5 10 15 20 25 30
Number of Concurrent Requests

20

40

Th
ro

ug
hp

ut
(r
eq

/s
ec

)

Server: Mixed Workload

docker
wasmtime
wasmer
wamr

Figure 4.5: The throughput in requests per second with an equal amount of I/O- and CPU-
bound workload on a Raspberry Pi and a server machine with both Docker and Wasm-based
container runtimes.

load test for the Pi, because OpenWhisk only creates two containers – at least up to a certain
threshold. Log collection is another process that tends to fail often, so we use --logsize 0
when creating the action, to prevent OpenWhisk from attempting to collect them. We use
the same parameters for creating the Wasm actions. We run one iteration of this test before
starting the measurement, in order to pre-warm containers. This is to test the system in a warm
state isolated from the effects of the first cold starts and get an unaffected measurement of the
performance of WebAssembly containers compared to native binaries in Docker containers.
At some points during the test run the system might decide to scale up if the load crosses a
certain threshold and perform a cold start of another container, which would be included in
the measurement. This would be the most realistic performance for the Vital Signs Analysis
example we gave earlier, i.e. continuous load on a function with the occasional cold start. With
this setup, we get the results in Figure 4.5.

59

4. Evaluation

OpenWhisk vanilla manages to handle up to 10 concurrent requests on the Pi, at which point
it creates a third container, which forces the Pi to use its swap memory and become orders
of magnitude slower. Again, at this point we stopped testing. The workload we run is mixed
and made up of an equal amount of I/O- and CPU-bound actions. Whether one or the other
is executed is determined at random, such that, on average, half will be I/O-bound and half
will be CPU-bound. We execute two runs and take the average for each number of concurrent
requests. Note that the CPU-bound workload is chosen such that the execution time is similar
on the Raspberry and the server machine, since the blocking I/O-bound workload also takes
the same amount of time on both devices. That makes the results more comparable. This test
is executed with Apache JMeter3, a load testing tool.

Runtime Raspberry Pi Server
wasmtime 3.8 2.2
wasmer 4.2 3.0
wamr 2.4 1.6

Table 4.1: The average throughput that the respective WebAssembly executors achieve over to
Docker, in the mixed workload scenario.

We can immediately see a stronger difference in all container runtimes than in the cold start
test. The performance improvements are listed in Table 4.1, where we can see, that on both
devices, the WebAssembly executors are better able to handle a mixed workload. The executors
perform similarly on both hardware classes when examining the order of fastest to slowest.
However, on the server, wasmer has a greater lead on wasmtime than on the Pi. Both of these
runtimes perform with higher fluctuations than wamr , which has a very consistent behavior.
In general, the effect is more pronounced on the Raspberry Pi, indicating that Docker is less
suitable for resource-constrained edge devices than for cloud hardware.

The lead is taken by wasmer , likely because we configured it to use the LLVM compiler
toolchain, which produces high-quality native code. On the other hand, wamrc also uses
LLVM for ahead-of-time compilation, but performs worse. In our later experiments we will see
that wamr has a stronger tendency to optimize for size, perhaps at the expense of speed, which
may be a contributing factor. Additionally, its API does not allow us to thread-safely initialize
the module once and run it multiple times. Instead, the module needs to be instantiated from
the raw bytes on every run call. Because of that, the implementation is less efficient compared
to the other executors. wasmtime is configured to use the cranelift JIT compiler. Because
of the inherent trade-off such a compiler has to make between compilation speed and code
quality, it is perhaps unsurprising that it is less performant than wasmer . Interestingly, it still
performs better than wamr .

3https://jmeter.apache.org/

60

https://jmeter.apache.org/

4.3. Throughput

4.3.2 I/O-bound Workload

To get a more isolated picture of the container runtimes performance, we test the workloads
separately on our server machine. The I/O-bound test is supposed to test the container runtimes’
ability to handle concurrent network requests. As we have explained in Chapter 2, serverless
functions are frequently used with external services, such as databases. This test simulates
this behavior by blocking with a thread sleep just like an I/O request would block. In the
Wasm executors this is implemented with capabilities, which allows the Wasm runtimes to
supply native host functions as imports to the module. In this instance, we create our action
using --annotation net_access true with the wsk cli. The Wasm executor then provides
the http.get function as an import to the module. Each executor implements this with the
aforementionend sleep . The module can then use these functions as if they were part of the
module. This way, we could easily implement an actual HTTP GET request. However, the lack
of interface types means the module can only call native functions with integer parameters
and return values, such that the practical use is still inhibited.

To isolate the performance from cold starts, a warmup phase is executed before gathering
data, which lets OpenWhisk create the containers and keep them warm. The throughput is
plotted in Figure 4.6. OpenWhisk imposes the same 4 container limit for all container runtimes,
which puts a limit on the throughput for I/O-bound workloads. However, again we can use the
concurrency limit to increase performance – here we set it to 3. The dockerskeleton we use
in OpenWhisk vanilla performs very poorly for I/O-bound workloads. Two concurrent requests
take twice the time that one request takes. This may be a limitation of the action proxy used in
the dockerskeleton . It can only achieve more throughput by starting new containers. Thus,
the concurrency limit essentially delays the peak I/O-bound throughput for the Docker version
until OpenWhisk creates 4 containers.

The Wasm executors on the other hand, have no such issue and can scale up to the 4 container
limit. Since we set the concurrency limit to 3, this allows 12 requests to execute concurrently
and we reach the throughput peak at that point. A higher concurrency limit would consequently
increase the possible throughput. Since blocking takes the same amount of time in every Wasm
runtime, this performance is mainly determined by the executor itself and its threading model
– something we have explored at the end of Chapter 3. Other than the OpenWhisk limitations,
the performance rests on the number of threads that can be spawned on the system.

Because the concurrency limit has such a pronounced effect on the performance, we also
plotted the same workload with a concurrency limit of one. Given what we just described, it
is no surprise that at 4 concurrent requests the system’s throughput is saturated. This test
also implicitly shows the direct comparison of the container runtime’s overhead, even when
the execution time is predetermined. Evidently, Docker has a larger overhead than the Wasm
executors, all else being equal.

61

4. Evaluation

2 4 6 8 10 12 14 16
Number of Concurrent Requests

10

20

30

40
Th

ro
ug

hp
ut

(r
eq

/s
ec

)
Server: I/O-bound Workload, Concurrency Limit = 3

2 4 6 8 10
Number of Concurrent Requests

5

10

Th
ro

ug
hp

ut
(r
eq

/s
ec

) Server: I/O-bound Workload, Concurrency Limit = 1

docker
wasmtime
wasmer
wamr

Figure 4.6: The throughput with an I/O-bound workload on a server machine with both Docker
and Wasm-based container runtimes. The y-axis shows the throughput in requests per second,
while the x-axis shows the number of concurrent requests, each of which is repeated 50 times
to generate a consistent load over a short period of time.

4.3.3 CPU-bound Workload

Figure 4.7 shows the result of the fully CPU-bound load test. This test shows a large performance
gap among the Wasm executors, but also to Docker. On average, the Wasm executors process
only 39% (wamr), 57% (wasmtime) and 88% (wasmer) of the throughput that Docker achieves.

Docker was particularly hard to evaluate for this workload. OpenWhisk – at least in the
standalone version – is hardly able to saturate the CPU, because the system will not create
enough containers to fully utilize it. This likely occurs because each container is run with
the --cpu-shares Docker option, limiting the share of the CPU the container is allowed to
use. Hence, if not enough containers are created, some invocations have to wait for others
to complete, even though the CPU is not fully utilized. By increasing the concurrency limit,

62

4.3. Throughput

2 4 6 8 10 12 14 16 18
Number of Concurrent Requests

5

10

15

20

25

30

Th
ro

ug
hp

ut
(r
eq

/s
ec

)

Server: CPU-bound Workload

docker
wasmtime
wasmer
wamr

Figure 4.7: The throughput with a CPU-bound workload on a server machine with both Docker
and Wasm-based container runtimes. The y-axis shows the throughput in requests per second,
while the x-axis shows the number of concurrent requests, each of which is repeated 50 times
to generate a consistent load over a short period of time.

we can work around that and let OpenWhisk execute actions in the same container to fully
leverage the assigned CPU shares. Increasing this limit too much, forces more actions to
share the same CPU shares, while not creating new containers. However, increasing the
memory on the container, which in turn makes OpenWhisk increase the CPU shares, does not
have a positive effect either. Rather, it delays OpenWhisk’s decision to create new containers
even longer, resulting in even poorer performance. After some trial and error, we arrived at
values which seemed to leverage the CPU rather well, the default 256 MB of memory and the
concurrency limit set to 3. The Wasm executors showed no such signs, simply because no
memory or CPU limiting is implemented in the first place. This will have to be a feature of a
fully production-ready Wasm executor, however.

Cold start latencies and resource costs for keeping containers warm are ignored in this test.

63

4. Evaluation

20 40 60 80 100 120 140 160
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

ti
on

Server: CPU-bound AssemblyScript

docker-nodejs
wasmtime

Figure 4.8: The ECDF for the execution of a WebAssembly module calculating prime numbers
executed in the wasmtime executor and JavaScript run in the openwhisk/action-nodejs-v14
image. The y-axis shows the proportion of total requests that were finished with the latency
given on the x-axis, or less.

With that in mind, the test shows that for a steady stream of highly concurrent CPU-bound
requests, using Docker is the best option; in particular if the container is likely to be reused
many times. This comes perhaps not unsurprisingly, given that the executing code is Rust
compiled to a native x86_64 binary. There is hardly a way to generate faster code.

In fact, if we compare the pure execution time of our WebAssembly action outside the server-
less context, we see the native binary being even faster. For that, we precompile our action
for wasmer and then measure only the pure function execution time, without the setup of
necessary contexts like Engine or even Module . In that case, wasmer achieves just 60% of
the throughput compared to the native binary. Compared to the 88% from above, it indicates
that OpenWhisk with Docker is unable to fully utilize the available hardware, either because
of the discussed configuration or because of internal overhead, like queuing and container
management.

Note that using native code in serverless functions is not a particularly popular approach.
Recall the serverless workload types we described in Chapter 2. We noted that functions which

64

4.3. Throughput

exhaust the CPU are more of a niche and that, if the executor can offer performance on the level
of node.js , it would roughly be on the same level as most of today’s functions. To put this into
perspective, we run an experiment to demonstrate the potential improvementWebAssembly can
give in comparison to today’s prevalent serverless runtime: node.js . To that end, we write a
function in AssemblyScript4, a strict variant of TypeScript5. TypeScript itself is typed JavaScript
and a popular way to write programs that compile to JavaScript. Given the widespread
support for TypeScript in serverless SDKs such as the AWS SDK6 or the serverless7 framework,
we expect most developers who run JavaScript to be actually programming in TypeScript.
AssemblyScript can compile directly to WebAssembly with the binaryen toolchain, that we
already use for optimizing our Wasm modules. Because AssemblyScript uses the types from
WebAssembly itself as its basis, not all TypeScript code can simply be compiled to WebAssembly.
Some minimal changes may be necessary to compile to both targets. We set up a sieve of
Eratosthenes to calculate prime numbers; a CPU-bound workload. The produced WebAssembly
module does not run in all our Wasm executors out of the box, so only wasmtime is shown.
Calculating prime numbers is a use case where raw performance matters and wasmtime
achieves more than 3× the throughput of node.js . The empirical cumulative distribution
function (ECDF) of the results can be seen in Figure 4.8. It shows that wasmtime performs
more consistently than the node.js execution, evident by the lesser spread on the former’s
curve. Given that the WebAssembly code is precompiled, while node.js must compile hot
code paths just-in-time, this is not surprising. On the other hand, since the sieve is a loop
and thus a very hot code path, the loss in performance is slightly surprising. Thus, for a
computationally intensive serverless function written in TypeScript, it may be worth porting
it to AssemblyScript, so it compiles to WebAssembly. However, AssemblyScript’s goal is not
to be a TypeScript to WebAssembly compiler but rather an extension to the web ecosystem,
complementing TypeScript and JavaScript. As programming languages go, AssemblyScript is
still fairly young. While it shows that the accessibility to write source code which compiles to
WebAssembly is lower than using systems programming languages like C or Rust, whether
it could eventually act as a general-purpose language to write serverless WebAssembly, is
uncertain.

In light of this experiment and the preceding one, a fully CPU-bound WebAssembly module
reaching 88% of the performance of a native binary in Docker, but with much reduced startup
costs, would seem to be an acceptable compromise.

4.3.4 Realistic Workload

Given what the research about serverless workloads showed in Chapter 2, we run another
experiment. Recall the analysis from Microsoft Azure that found 81% of functions are invoked
less than once per minute, but those accessed more frequently make up 99.6% of all invocations

4https://www.assemblyscript.org
5https://www.typescriptlang.org/
6https://github.com/aws/aws-sdk-js
7https://www.serverless.com/

65

https://www.assemblyscript.org
https://www.typescriptlang.org/
https://github.com/aws/aws-sdk-js
https://www.serverless.com/

4. Evaluation

500 1000 1500 2000
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
ti
on

Server: Realistic Workload

docker
wasmer
wamr
wasmtime

Figure 4.9: The ECDF of our experiment, designed based on serverless usage data fromMicrosoft
Azure. The y-axis shows the proportion of total requests that were finished with the latency
given on the x-axis, or less.

66

4.3. Throughput

[Sha+20]. This shows that there is a small number of functions accessed frequently, and a
larger amount of functions accessed sporadically. Since we cannot simulate a test on the
scale of Azure, we map the workload to a smaller scope. The test sends a sufficient number
of concurrent requests in 4 threads. The latter comes from the 4 container limit imposed by
OpenWhisk. As we saw, blocking actions are not handled well by OpenWhisk vanilla. As a
consequence, we set the concurrency limit of the individual actions to their default of one, in
order to not distort the result due to this architectural issue. For each request sent, we use
randomization such that 90% of requests are sent to the same two actions. These are equally
likely to be either CPU- or I/O-bound. For the other 10% of requests, one of 60 actions is
selected at random, where the likelihood is again 50% for them to be either CPU- or I/O-bound.

Thus, there is a high probability that a function is called, for which a warm container should
be available. Occasionally, one of the rare functions is called which will inevitably cause a cold
start. In summary, this test will show the performance of the system under load, where most
functions are warm but the occasional cold start will need to be handled. We have plotted the
ECDF of this test in Figure 4.9.

For the Docker runtime we can see that around 40% of requests were finished in less than
500 ms. However, around 60% of requests were only finished in less than 1500 ms. We can
reasonably explain this with warm and cold starts. The pure function execution times are
always less than 300 ms, because we configured them so. From Figure 4.3, we know that the
average cold start time of Docker on the server at 4 concurrent requests is 1269 ms. Thus, once
a cold start is incurred, it adds to the latency seen by the caller. Therefore, either functions
run in a warm container for around 500 ms, or they cause a cold start and need the same
amount of time in addition to the cold start, which is why we see the sudden increase at around
500 ms. Once cold starts are occurring, they have a detrimental effect on the overall system
performance as indicated by the increasingly higher latencies beyond the plateau.

Up to 20% of invocations handled by the Docker runtime finish in the same amount of time or
faster than WebAssembly executors. Given the bend at 40% and our experimental setup, this is
because half of the actions executed warm are CPU-bound, while the other half is I/O-bound.
This is consistent with the previous data. As we have seen in Figure 4.7, the Docker runtime
is able to handle CPU-bound actions faster, thanks to directly executing native code. But it
became clear in Figure 4.6 that the runtime is less well equipped to handle I/O-bound ones.
Hence, why we see the bend at around 20%, where the Docker curve migrates from being faster
than the Wasm executors to being slower.

The WebAssembly executors show latencies beyond 500 ms only for a very small proportion of
the requests. Similar to Docker, there is a visible bend in some of the executor’s curves, but not
from cold starts. Since it is located at around the 50% mark, this has to be due to the different
workload types. Data from the earlier experiment show that the cold starts for the Wasm
executors are 72 ms (wasmtime), 76 ms (wamr) and 83 ms (wasmer) for 4 concurrent requests.
Therefore, the cold starts are not significant enough to saliently show up in the ECDF. About
half of wasmer ’s requests are faster before it drops to wasmtime ’s levels. Taking Figure 4.7
into account once more, where wasmer was the fastest Wasm executor, half of these requests
correspond to CPU-bound actions. The curve for wamr is analogous. Notably, wasmtime

67

4. Evaluation

shows no salient points, but rather has the smoothest graph. Most likely, it so happens to
execute both workload types at around the same speed.

One question that might arise while looking at this figure, is why 60% of the requests running on
Docker seem to be suffering a cold start. If we send 90% of requests to the same two functions,
then the same amount should be in the hot path. Due to being limited to 4 containers,
OpenWhisk will remove a container to make room for another one under sufficient load and
if it deems it necessary. If we look at the number of cold starts, indeed we see around 58%
of requests requiring one. This is a fundamental limitation of OpenWhisk, perhaps due to
our usage of the standalone version and would likely not apply to a, for example, Kubernetes
deployment. However, it affects Wasm executors as much as Docker according to our numbers.
But evidently, the Wasm executors are able to cope much better with repeated cold starts.

4.4 · Resource Usage

This test aims to evaluate what the resource costs are, for keeping actions in memory and
ready for execution. To that end, we run our cold start test again and measure the amount of
memory for each container once the actions have finished execution, but before OpenWhisk
removes them. At this point, Docker containers have been paused by OpenWhisk. We use the
memory usage output of docker stats as the basis for evaluation. For the Wasm executors
we read the resident set size (rss) of the entire process. Hence, we also measure the overhead
of the web framework we run on, but also the Wasm runtimes’ objects which are instantiated
globally, such as Engine s. Thus, this method is slightly imprecise in that it reads more than
the pure memory occupied by the container. It would be difficult to define what constitutes
the container, too, since the data structures, global or not, are all linked together to produce
the running system. Since the Docker container also contains other data only more or less
relevant to the execution, this is acceptable. It gives us an estimate for the average total cost of
keeping a container in memory. Ultimately, the entire memory consumption is what matters.
This method works slightly in favor of Docker, since we do not measure the memory allocated
to the Docker daemon process. For the Wasm executors, we divide the measured amount of
memory by the number of containers that are kept alive at that point, to get an estimated
memory usage for each container. The amount of memory consumed when idling, i.e. after
startup, are 7.07 MiB for wasmtime , 4.23 MiB for wamr and 5.28 MiB for wasmer . At first
glance, it may seem that wasmtime and wasmer fare the worst. However, this may be due
to the fact that their APIs are the most suitable to our needs, because they let us instantiate
more of the necessary data structures ahead-of-time than wamr . We are happy to trade this
memory for less setup costs later.

For the Wasm executors, we expect the amount of consumed memory to depend primarily
on the size of the Wasm module. So we run this test thrice. For that we compile the hash
module with different options to get different module sizes.

• Release mode with link-time optimization (LTO)

68

4.4. Resource Usage

• Release mode without LTO

• Debug mode

LTO enables compilers to perform expensive, but very effective optimizations at compile time,
when the different libraries of the program are linked together. Compiling our hash module
with LTO brings the size down to 16.5% (312 KiB) of the non-LTO version. The resulting sizes
of the Wasm modules and the native binaries are given in Table 4.2, to provide context for the
following results.

Compilation mode WebAssembly Native Binary
Release + LTO 312 KiB 2.01 MiB

Release 1.51 MiB (×4.83) 3.80 MiB (×1.89)
Debug 4.76 MiB (×15.25) 6.46 MiB (×3.21)

Table 4.2: Size of the hash module when compiled to wasm32-wasi and
x86_64-unknown-linux-musl targets respectively. To provide three different container sizes
we use release mode with LTO and without as well as debug mode. The relative size increase
over the release with LTO are also given.

The measurements can be seen in Figure 4.10. These confirm that for the Wasm executors,
the in-memory container size is largely dependent on the module size, simply because the
container is the module in memory plus the necessary supporting data structures. In particular,
the modules are held in memory for the fastest possible access. For Docker on the other hand,
we have to explore in some more detail how an action is executed to understand the results. In
order to run native binaries, we use the dockerskeleton image. When a container is created
from that image, the so-called action proxy starts. This is a proxy service that implements
the familiar /init and /run endpoints. It is generic over the underlying executable, so it
could run bash or perl scripts as well as any native binary. When /run is invoked and the
initialized action is executed, the script or binary runs, its result is read by the proxy and
returned. Consequently, after the binary finished execution, the memory of its process is
freed as usual. Hence, when we measure the memory in-between action executions, we only
measure the amount needed for the action proxy and the rest of the container. It does not
matter whether the action itself is 1 MiB or 10 MiB; the memory cost of keeping the container
warm is the same. This is confirmed by our measurement. We can expect Docker containers
to be consistent in their memory usage independent of the concrete action. This particular
execution model applies to the dockerskeleton , but other images, such as the one based on
node.js , may behave differently.

Between different module sizes, the results show wasmer ’s containers to double their memory
usage from the LTO to the non-LTO version, with another increase by roughly 3× to the debug
module. For wasmtime , the difference between LTO and non-LTO is negligible, and then the
memory usage increases by 2.4×. For wamr the difference between the release modes is barely
noticeable and then goes up by 36%. Docker’s container sizes between release modes hardly
differ and only increase by 2.5% to the debug version.

69

4. Evaluation

docker wasmtime wasmer wamr
0

5

10

15

20

m
em

or
y
us

ag
e
(M

iB
)

Memory Usage per Warm Container

Release (LTO)

Release
Debug

Figure 4.10: The average memory usage of Docker and WebAssembly containers given different
module sizes.

LTO does not seem to make a large difference to wasmtime or wamr , but wasmer does not
seem to apply optimizations when precompiling. The results show that for wasmer and
wasmtime the container size primarily depends on the module size, except for LTO, where
we suspect wasmtime to apply optimizations when precompiling and thus coming out at the
same size. Due to its JIT nature, it is probably more likely to trade memory for compilation
speed or code performance. While wamr seems to be very memory efficient, it is important to
note that due to its architecture, we do not hold instantiated modules in memory in-between
run invocations, but only the module bytes themselves.

Given these results and our minimal but realistic WebAssembly module size, we could hold
more WebAssembly containers in the same amount of memory than Docker. Especially more of
the less popular functions could be kept warm resulting in less cold starts. Although, with cheap
cold starts, there is an interesting trade-off between using resources to keep functions alive,

70

4.4. Resource Usage

Runtime Release (LTO) Release Debug
wasmer 5.5× 2.7× 1.2×

wasmtime 3.5× 3.5× 1.4×
wamr 7.4× 7.1× 5.3×

Table 4.3: The ratio of memory usage for the different module sizes in WebAssembly executors
compared to the Docker container runtime.

and saving memory but paying the small, but nonetheless non-zero latency cost for the cold
start. Table 4.3 shows how many more containers could be kept warm in the respective Wasm
executors compared to Docker. When optimizing the module size with LTO or other techniques,
we can fit more than five times as many containers in the same amount of memory compared
to Docker when using wasmer . Even for big modules we stay below the consistently higher
memory usage of Docker. In more constrained environments with lower memory availability,
wamr – primarily due to how we use it in the executor – would be a good choice given its
much lower memory usage, but at the cost of performance as we have seen in the previous
measurements. Ultimately, the overhead introduced by the executors themselves is minimal
and mostly dependent on the module size. This puts the control in the action developer’s hands.
If they manage to strip their binary down to the necessary contents, they can expect a small
memory footprint at execution time. With Docker, there is a consistent memory usage but
higher than the Wasm executors and less opportunity for developers to influence its footprint.

If memory is a priority, other optimizations such as using a smaller memory allocator are also
possible. Written for the use case in browsers, wee_alloc 8 is an allocator that trades speed
for size. Rust also allows writing no_std programs, i.e. programs without its standard library.
Since this is not how we anticipate most functions would be written, we did not employ this
technique. However, without the standard library only the code and libraries the developer
brings in end up in the binary, granting a maximum of control over the program’s size. Using
other languages may also come with size benefits. The prime number example we wrote in
AssemblyScript is very small in comparison to the Rust-produced modules and comes out
optimized at about 22 KiB. It shows that modules can get very small and the in-memory
container sizes would benefit accordingly, for most of the runtimes.

It would also be possible to accommodate systems with very constrained memory settings, by
fully exploiting the WebAssembly runtime’s design. Wasm runtimes do not fundamentally
have to keep modules in memory. The command line versions of wasmtime or wasmer cache
compiled modules on the filesystem by default, so the support already exists. wasmer would
be a prime-candidate for this type of optimization. The executor instantiates a module from
in-memory bytes it receives from OpenWhisk. However, wasmer – in its AoT mode with LLVM
and the NativeEngine – needs to write the bytes of the shared object it gets to a temporary
file, because dlopen only works on files. Thus it already needs to write to a file internally
because of this restriction. Doing this procedure in the executor itself would be possible, since
the API allows us to create a module directly from a file to skip this process. It means we

8https://github.com/rustwasm/wee_alloc

71

https://github.com/rustwasm/wee_alloc

4. Evaluation

would have to create the Module from that file on every run invocation, in order to save on
memory. Given that the init time of wasmer is currently around 20 ms, according to Figure
4.4, it is not infeasible to incur this cost on every run if memory is a priority. Alternatively,
wasmtime ’s deserialization cost is just half, and thus could be similarly cached to the file
system. Again, there is a trade-off between memory and performance, but most importantly, it
exists and can be made by the implementor for whichever property is more essential.

72

CHAPTER 5
Related Work

In this chapter, we look at approaches for reducing cold starts such as improvements to the
traditional container runtime but also including WebAssembly.

5.1 · Incremental Approaches

These approaches attempt to work around the limitations of OS-level virtualization with
additional techniques, typically implementing some form of caching or pre-creation. Thus,
they can be seen as incremental improvements.

5.1.1 Pre-Warming

Lin and Glikson implement a pooling solution for Knative, an open source platform built on
Kubernetes [LG19]. Pods are pre-warmed and added to a management pool. When a request
comes in, instead of cold starting, a pod from the pool is used for execution. According to
them, the migration takes around 2 seconds. The response to first request for a simple HTTP
server example is improved by 2.3×, while a more complex image classifier is sped up by
5.2×. In absolute terms, however, the response times are still in the range of multiple seconds.
Notably, this approach also includes pre-warming not just the container and language runtime,
if applicable, but also the function itself. That in particular explains the large gain in the
image classifier example, which needs to load its machine learning model from disk in the first
invocation. This example also shows that our decision against a Kubernetes-based approach
due to performance concerns is warranted.

Thömmes describes the pre-warming approach used in OpenWhisk [Thö17]. The platform
operator needs to configure the pre-warming system by specifying which containers are pre-
created. For instance, if the anticipated load is primarily JavaScript functions, then the operator

73

5. Related Work

configures some number of node.js containers to be started. In contrast to the previous
approach, only the container setup itself and that of the language runtime is taken out of the hot
path. Any function initialization still needs to happen during init . Hence, the only difference
between pre-warmed and warm containers is that the initialization still needs to happen before
execution. The upside is that the container is generic over any potential JavaScript function
and not bound to any specific action. While JavaScript is interpreted or just-in-time compiled,
and therefore does not add much to the initialization, for some languages it can be much longer.
As we mentioned before, the reason we used the dockerskeleton rather than the official
Rust runtime is that the source code needs to be compiled during the initialization. While this
allows the portable source code to be compiled for any underlying hardware and then executed
at native speeds, it comes with a significant compilation cost. Our approach improves on that,
since WebAssembly itself is a portable, yet more efficient and compact code representation and
could be executed immediately, but also compiled again for more performance.

While these attempts manage to reduce the cold starts, they come at a high cost of resources.
Pre-warming a sufficient amount of containers to avoid cold starts even during bursts of
requests requires seizing a significant amount of memory. This is especially problematic at the
edge.

5.1.2 Pre-Creation

One approach that alleviates cold starts while consuming only negligible amounts of resources,
is proposed byMohan et al. [Moh+19]. Their approach avoids the specialization of the container
for either one particular function or the language runtime. Rather, it can be used for any
container. First, they analyze the core issue for the high cold start times of containers and
their rise under increasing concurrency. The startup of a Docker container requires setting
up its network namespace in the Linux kernel, which is responsible for more than 90% of the
startup time. The kernel uses a single global lock for this task, which is the reason for the
decline in performance under concurrency. Given these findings, they propose an approach
that pre-creates these namespaces using so-called pause containers. Their initialization is
effectively paused after the network namespace has been created. Subsequently, they can be
attached to a Docker container, such that both share the namespace and the Docker container
itself avoids the namespace creation. On top of this, they introduce a pool manager, which
holds a number of pause containers from where they can be attached as needed, but also
returned to after the attached container terminates. Due to only requiring memory on the
order of kilobytes, pre-creating a large number of pause containers is reasonable and can thus
accommodate bursty workloads, too. The evaluation shows a reduction in cold start time of up
to 80%. Given these numbers, this approach is a viable alternative to a more radical approach
like ours, at least for the cloud and perhaps also on edge devices, although the latter has not
been evaluated.

74

5.2. WebAssembly in Serverless

5.1.3 Prediction

Shahrad et al. characterized the serverless workload at Microsoft Azure and use their findings
to propose an improved keep-alive policy [Sha+20]. They first point out that most systems such
as OpenWhisk, but also the large cloud providers, use a fixed policy where every function’s
execution environment is kept alive for the same amount of time. Given that they find an 8
order of magnitude difference in the frequency with which functions are called, this can be a
very wasteful policy for many of the rarely invoked functions.

They characterize policies by a set of rules. One is the pre-warming window, which is the time
the policy waits after an execution before pre-warming the container for the next anticipated
invocation. The other is the keep-alive window, which is the time it keeps containers warm
after either pre-warming or an actual execution. Their proposed policy works by learning a
function’s invocation frequency and adjusting the window parameters. It uses a histogram
to track the idle times of functions, from which the 5th percentile is used as the pre-warming
window, and the 99th percentile used as the keep-alive time. Using real invocation traces
as input, they simulate workloads against an implementation of their policy in OpenWhisk.
The standard fixed keep-alive policy in OpenWhisk generates 2.5× more cold starts than the
histogram-based policy while using more memory. Overall, the histogram-based policy reduces
the number of cold starts while minimizing the used memory.

This approach is independent of the underlying container runtime. Although Wasm executors
can reduce the cold start times significantly, for efficient successive invocations some amount
of keep-alive is needed. Since the keep-alive policy in OpenWhisk is a fixed one, this approach
would evidently be a better choice to reduce cold starts and resource waste. While pre-warming
is less important when cold starts are cheap, having a keep-alive time based on the function’s
invocation pattern still reduces memory consumption compared to a fixed policy. Future work
might examine this policy for Wasm executors and find a suitable percentile to choose the
pre-warming window from, given that cold starts are cheaper.

5.2 · WebAssembly in Serverless

5.2.1 Execution in node.js

We built our work on previous research that built a WebAssembly-based serverless runtime.
Hall and Ramachandran use the V81 engine’s WebAssembly support within node.js as their
basis. Since V8 implements the WebAssembly standard like any other runtime, it has the same
guarantees in terms of security. In particular, V8 contexts provide isolation between different
executing WebAssembly modules. Thus, for each request their implementation creates a new
context where the WebAssembly module is loaded, executed via the V8 API, the result returned
and the context destroyed.

1https://v8.dev/

75

https://v8.dev/

5. Related Work

For single clients sending multiple requests, they find their WebAssembly platform to have a
small initial cold start penalty due to context creation, but performs more predictably than
Docker afterwards. Their test against native binaries in Docker containers shows them to
suffer from a high cold start latency but are faster over time. The examples they use are
image recognition applications and thus CPU-bound. In that regard, these are similar results
as our CPU-bound workload, where Docker’s slow initial startup was amortized over many
invocations. In the best case, their numbers indicate the WebAssembly module to reach 56% of
the throughput of Docker, while our precompiled WebAssembly reached 88% of throughput
with wasmer . Recall that wasmtime , our JIT-configured runtime reached 57% of throughput
in our test. This confirms that WebAssembly execution in node.js is not the best option for
pure speed due to its JIT compilation strategy.

They note that the model of single clients making multiple requests is not fully representative
of a real workload. Rather, multiple users would make requests, each of which needs to be
isolated and consequently result in a cold start. Their findings for this access pattern are in line
with our mixed and realistic workloads, namely that WebAssembly-based executors exhibit
more consistent performance. Whether or not we have improved upon the cold start times of
their approach is unclear, since no specific cold start measurements are given, and only the
latency as a whole is examined. Since they use node.js , their solution would most likely be
able to achieve a much higher throughput for an I/O-bound workload, since the runtime uses an
event loop to provide efficient non-blocking I/O. As previously mentioned, once WebAssembly
runtimes and the corresponding Rust libraries have added support for asynchronous I/O, they
should be at least as fast.

In summary, our work builds on top of this research by implementing support with three
standalone WebAssembly runtimes, some with higher throughput. In Chapter 3, wasmtime ’s
JIT proved to be much slower than precompilation, and we can assume node.js to behave
similarly. Thus, we can assume that our ahead-of-time approach improved the cold start times
in comparison to their on-demand approach, in particular on resource-constrained edge devices.
Additionally, our work adds capabilities to the system, which shows how functions could share
system resources across invocations or make requests over the network with fine-grained
acccess control.

5.2.2 Cloudflare Workers

Cloudflare is a cloud service provider, whose Workers offering enables end-users to run code on
its Edge Network. The Workers also use Google’s V8 JavaScript and WebAssembly engine to
execute that code. Instead of running each serverless function in a separate Docker container
or even node.js instance, the Workers use V8 isolates for lightweight sandboxing. Isolates
start within the already running V8 engine, so the start is almost instantaneous. Workers allow
execution of JavaScript directly in an isolate as well as Rust, C and other languages via Wasm
support [Clo21]. Similar to the preceding approach, a lighter-weight sandboxing is introduced
to cut down on the cold start latency, only this time isolates instead of contexts. This execution
model eliminates the costly startup of a node.js process, but it would still need to parse

76

5.2. WebAssembly in Serverless

and compile the JavaScript or WebAssembly before execution, which is what our approach
eliminates.

5.2.3 Fastly’s Lucet

Cloud provider fastly offers its experimental fastlylabs2, where its previously mentioned lucet
WebAssembly runtime can be used inside Terrarium, to run Wasm code at the edge [fas19]. The
lucet compiler first translates WebAssembly to native code, after which it can be executed
in the complementary runtime. Due to this design – which spawned the idea for our work –
lucet can execute Wasm efficiently on every request, with module instantiation times of 50
microseconds and only kilobytes of memory, according to them.

Even though we did not leverage lucet due to security concerns as well as platform and ISA
support, we did use the idea of precompiling to native code ahead-of-time. This payed off,
given that we measured module instantiation times of 340 microseconds to set up a wasmtime
instance from a module. Without this, we also would not have achieved cold starts of around 10
milliseconds in that runtime. Fastly has joined the Bytecode Alliance3, under whose umbrella
wasmtime is developed, and lucet is being integrated into wasmtime to provide ahead-of-
time compilation [Hic20]. This might bring its AoT performance into the realm of wasmer ’s.

5.2.4 Faasm

Shillaker and Pietzuch introduce faasm , a serverless runtime using WebAssembly [SP20]. One
or more functions is executed in a faaslet , which usesWebAssembly’s software fault-isolation
to restrict memory access to its own address space. Every faaslet is run in a new thread
which allows limiting CPU cycles with cgroups and network with Linux namespaces. We
did not provide a CPU limitation mechanism since we believe our threading model to be only
an intermediate solution until WASI functions can be executed asynchronously, but it could
use the same cgroup mechanism in principle. When executing asynchronously, however,
cgroups cannot be used to limit an individual function’s CPU time, which is therefore an
open problem. Memory on the other hand can be limited through appropriate APIs of the
WebAssembly runtimes.

Running multiple functions together allows for memory sharing and statefulness – an explicit
goal of the runtime – also across hosts via a state management API. Even though in traditional
serverless platforms functions can be chained together, this process requires serialization which
can be omitted when sharing memory directly. This is implemented on top of the Wasm
memory model with shared regions, where the linear memory of a WebAssembly instance is
extended by additional pages which are mapped onto that region. Statefulness was not a goal
of our work, given that this limitation of serverless platforms has not been a primary one for

2https://www.fastlylabs.com/
3https://bytecodealliance.org/

77

https://www.fastlylabs.com/
https://bytecodealliance.org/

5. Related Work

developers, according to our literature review. For applications that make heavy use of state
sharing, this may prove beneficial, although the increase in implementation complexity needs
to be considered.

Fast cold starts are achieved by initializing a faaslet ahead-of-time as a snapshot of a
function’s stack, heap function table, stack pointer and data – in WebAssembly terminology.
This is generated at function-creation time and stored in an object store. When cold starting a
function, the snapshot is retrieved and restored to produce a faaslet instance. The restoration
procedure guarantees no data from previous invocations is shared with future invocations. This
is similar to how we use WebAssembly Module s as our templates and produce Instance s on
every invocation for isolation. However, due to their pre-creation and restore procedure, the
cold start times are at around 1 millisecond. This technique could be adopted in our work as
well to provide even faster cold starts.

5.3 · WebAssembly in Smart Contracts

Smart contracts are programs deployed to distributed ledgers from where they can be run by
users on-demand. As such, smart contracts are akin to serverless functions, since developers do
not need to manage the machines they run on. Users of the contract often pay a per transaction
fee similar to the pay-as-you-go model of serverless and the node running the untrusted
contract needs to isolate its execution to enable secure multi-tenancy. The transaction fee
is usually based on the amount of CPU the smart contract consumes, which incentivizes
developers to produce lightweight code. That in turn means it is very likely that the average
smart contract executes much faster than the average serverless function, making OS-level
virtualization even less suitable for isolation, since it would be responsible for an even larger
proportion of the latency. The node operator running the smart contract has an interest in
achieving high throughput to make the most of the available resources, so performance cannot
be neglected. Additionally, smart contract nodes likely need to handle bursty request patterns
and thus need to be elastic, too. These requirements are similar to what a serverless container
runtime needs to offer.

Fittingly, WebAssembly has been recognized as a suitable target format for smart contracts.
The Ethereum-flavored WebAssembly restricts the instruction set to a suitable subset for smart
contracts and one of the cited reasons for the switch from the previous custom virtual machine is
performance [Dev21a]. The conforming hera 4 implementation can useWebAssembly runtimes
that use interpretation, JIT or AoT compilation strategies. One of the options includes WAVM 5, a
runtime written in C++ with a focus on performance and claimed near-native execution speed.
Other ledgers like near6 use wasmer with caching, while IOTA7 uses wasmtime and EOSIO8

4https://github.com/ewasm/hera
5https://github.com/WAVM/WAVM
6https://github.com/near/nearcore/tree/master/runtime/near-vm-runner/
7https://github.com/iotaledger/wasp
8https://github.com/EOSIO/eos-vm

78

https://github.com/ewasm/hera
https://github.com/WAVM/WAVM
https://github.com/near/nearcore/tree/master/runtime/near-vm-runner/
https://github.com/iotaledger/wasp
https://github.com/EOSIO/eos-vm

5.3. WebAssembly in Smart Contracts

implemented their own WebAssembly VM, citing a lack of performance in existing runtimes.
Many more ledgers have adopted what seems to have become the de-facto standard target
format for smart contracts.

Overall, these approaches validate the fundamental choice of WebAssembly as a performant
option in scenarios where lightweight isolation is required. The smart contract space will be
interesting to watch and has already given rise to some WebAssembly synergies. For example,
both near and fastly are listed as platinum sponsors on AssemblyScript’s GitHub page9, which
might make AssemblyScript a more viable and mature alternative to write serverless functions
in WebAssembly.

9https://github.com/AssemblyScript/assemblyscript/

79

https://github.com/AssemblyScript/assemblyscript/

CHAPTER 6
Conclusion

In this work, we implemented a WebAssembly container runtime for Apache OpenWhisk. The
main goal was to examine the performance differences between the WebAssembly and Docker
container runtimes in terms of cold start latency and execution performance. In this chapter,
we conclude the work by answering the research questions posed in Chapter 1.

6.1 · Research Questions

RQ1: By how much can WebAssembly runtimes alleviate the cold start latency?

Our WebAssembly executors can reduce the cold start latency, on average, by more than
99.5% on a Raspberry Pi compared to OpenWhisk using Docker. This is in part due to Docker
reaching the memory limits of the Pi and swapping. However, even on our server machine,
where enough memory is available, the cold start time can be reduced by around 94%, on
average. The executors behave more consistently in the cold start than the Docker container
runtime. Among the Wasm runtimes, wasmer takes more time for the cold start than the
others, being between 2 - 3× slower. The wamr and wasmtime runtime behave very similar,
with wamr taking the lead due to its computationally cheap initialization procedure.

When only accounting for the overhead introduced by the executors themselves, wasmtime
introduces less than 10 ms, and wasmer less than 20 ms on the server machine. In comparison
with Docker startup times, which are always far north of 100 ms [Wan+18; Man+18], this is
an order of magnitude lower. On the Raspberry Pi, the WebAssembly runtimes bring the cold
start overhead into the range of 112 ms to 274 ms, which is on the same order of magnitude as
Docker on a server machine. Furthermore, we have seen in our tests – what is also confirmed
by other research [Moh+19] – that Docker startup times rise under increasing concurrency,
while the Wasm executors behave consistently across the number of concurrent requests. Since

81

6. Conclusion

bursty workloads are especially prevalent in serverless, this is an equally important property.
With these results, we expect Wasm executors to perform similarly outside of the OpenWhisk
context.

RQ2: How do the performance characteristics of the WebAssembly and Docker
container runtimes differ?

In the mixed and realistic workload we can best see the holistic picture, because it shows the
execution performance including cold starts. Here, the WebAssembly executors are always
faster than Docker. In the mixed workload, the WebAssembly executors achieve between 1.6
and 3× the throughput on the server, and 2.4 to 4.2× the throughput on the Pi. In the realistic
workload, we find Docker’s overall performance to be strongly linked to the cold start time.
The WebAssembly executors, however, are not noticeably susceptible to cold starts, showing
much more consistent behavior. In the realistic workload, wasmer takes the lead and processes
around 95% of requests strictly faster than all other container runtimes. For sufficiently long
requests, either CPU- or I/O-bound, the cold start time of wasmer does not significantly affect
its performance, even though it is twice that of wasmtime or wamr .

For I/O-bound workloads, the used Docker image shows a higher overhead even when the
execution time itself is fixed. It confirms that Docker has a higher inherent management cost
due to implementing isolation with OS-level virtualization, rather than in user space. TheWasm
executors scale linearly for I/O-bound workloads, up to the limits imposed by OpenWhisk and
later the underlying operating system, due to their threading model. Once Wasm runtimes
allow handling I/O asynchronously – which is starting to appear – we expect this performance
to be even better while consuming fewer resources.

On the other side, Docker handles pure CPU-bound workloads very well. It proves once more
that Docker containers can be very performant – once they are running. The issue is getting
to that point. In terms of pure CPU utilization, wasmer managed 88% of the throughput
compared to the native binary in a Docker container, with the other runtimes falling behind
more quickly. Our AssemblyScript experiment showed, however, that the prevalent node.js
runtime would perform much worse under such workloads, indicating that they are either
not very common in today’s FaaS or that this level of performance is good enough. Since
WebAssembly shows to be several factors faster, this is an overall improvement.

RQ3: What are the resource costs for keeping containers warm in both container
runtimes?

The cost for keeping containers warm is relatively consistent for Docker independent of module
size, for the image we tested. The in-memory size of WebAssembly containers is primarily
determined by the module they hold. The wasmer runtime shows the strongest such effect
closely followed by wasmtime . Due to not keeping modules in memory between requests,
wamr shows very little memory usage and exemplifies the use case when memory would

82

6.1. Research Questions

be very constrained and a priority over speed. WebAssembly modules can be optimized to
contain only the necessary code with LTO compilation in Rust or with AssemblyScript by
default, in which case the module is in the lower kilobytes range. Overall, for these low-sized
WebAssembly modules, the Wasm executors can be expected to consume less memory than
the Docker image we tested and thus hold multiple containers in the same amount of memory.

RQ4: Which WebAssembly runtime is the most suitable for use on edge devices?

Both wasmtime and wasmer have an API that allows us to efficiently implement our main
requirements for modules: An initialize once, run often lifecycle. Unfortunately, wamr ’s API is
less suitable to that task and it may be part of why it lacks in performance. It has the lowest
throughput of Wasm executors in I/O- and CPU-bound workloads, as well as the mixed and
realistic workload. The memory usage, on the other hand, is lowest in terms of idle footprint
and container size, from a pure numbers perspective. Its API also showed limitations that the
others did not have, that is, specifying function imports on a per-module basis is not possible. A
certain upside is its support for more instruction set architectures than the others, which may
become relevant for heterogeneous edge devices. From a performance perspective however
and unless memory is very constrained, it is the least suitable of our selected runtimes.

It then comes down to the other two runtimes. The main advantage of wasmer is its ahead-
of-time compilation that produces high quality native code, evident by its performance in
CPU-bound workloads. This seems to be coupled with taking twice the time for cold starts
compared to wasmtime , which handles this task particularly well. On the Raspberry Pi and in a
mixed workload, the margin to wasmer is slimmer than on the server. In our realistic workload,
wasmer showed that the slower cold start did not significantly affect its throughput, being
even strictly faster than wasmtime . Both runtimes support primarily x86_64 and aarch64 ,
which covers a wide range of devices, but particularly arm32 support is missing as yet. How
relevant that is depends on the planned use of the serverless platforms and whether its worker
nodes would run on devices with that or other ISAs. Both of these runtimes perform well
under various circumstances, but based on our general-purpose mixed and realistic workloads,
wasmer takes the lead, even with a slightly higher memory usage.

RQ5: How suitable is WebAssembly for serverless execution?

We find WebAssembly to be a very suitable target format for serverless functions. This comes
down to a number of points.

Language
Support

The high-performance languages C, C++ and Rust already have excellent
support for Wasm as a compilation target. Based on a curated list1, many
more languages such as AssemblyScript, C#, Lua, Go and Zig are considered
production-ready. Work for Python, Java and Kotlin support is also underway.

1https://github.com/appcypher/awesome-wasm-langs

83

https://github.com/appcypher/awesome-wasm-langs

6. Conclusion

Ultimately, that means developers do not have to learn a new language to write
serverless functions, which was previously enabled by packaging languages’
runtimes in Docker images. With WebAssembly, serverless operators can polish
their support for WebAssembly instead of maintaining multiple Docker images
with different language runtimes in different versions and for different ISAs.
This reduction in complexity also reduces the attack surface.

Performance
& Cold Start

The performance of WebAssembly primarily depends on the compilation strat-
egy used by the runtime. We have seen up to 88% of the CPU-bound per-
formance of Docker and better performance in I/O-bound workloads. The
latter will improve even more once Rust runtimes are able to execute the WASI
I/O functions asynchronously. With AssemblyScript, we have seen that the
same program code will run faster when compiled to WebAssembly than in
a node.js runtime, making this target even more attractive to TypeScript
developers. The lightweight isolation of WebAssembly means a fast cold start
without sacrificing security. The APIs of our Rust runtimes proved powerful
enough to implement a fast startup procedure with precompilation. We can
essentially use WebAssembly as a universal intermediate representation of a
program, that can be compiled to a more performant version, which is itself a
useful merit.

Scale-to-zero While WebAssembly does not get us all the way to the ideal of scale-to-zero, it
gets us much closer than Docker. It would allow for rarely invoked functions
to never be kept-alive and always cold start with negligible performance costs,
while keeping the frequently accessed ones in memory with little memory cost.
This would require a suitable keep-alive policy like the one introducded by
Shahrad et al.

System
Access

The WebAssembly system interface allows for secure access to resources on
the host. It enables more fine-grained access control than Docker without a
significant overhead. We have seen how a Wasm executor can give a module
access on a per-function basis and per-file for fileystem access.

The key takeaway is thatWebAssembly proves to be a suitable target format due to a performant
isolation mechanism with fast startup times.

6.2 · Open Challenges & Future Work

There are a number of open challenges to create a fully production-ready WebAssembly con-
tainer runtime.

Even though WebAssembly has left the experimental phase and is standardized, so far it is only
a minimum viable product. Some important features are proposed but not yet implemented.

84

6.2. Open Challenges & Future Work

These include interface types, i.e. passing complex types from host to module or module to
module, multi-threading and atomics or a garbage collector (GC), which will make it easier for
GC’ed languages to be compiled to Wasm.

We also previously mentioned running WASI functions asynchronously, which would allow for
non-blocking I/O and thus much better performance for I/O-bound workloads. This is planned
to become available as wasi-cap-std-async andwill then be usable byWebAssembly runtimes
that implement support for it, like wasmtime . For other runtimes, which do not build on this
library, it is unclear if and when support will land.

Sharing resources fairly among tenants is important for serverless frameworks. While memory
can be limited by the host of a Wasm module, limiting CPU shares is not possible. Due to
popularity in smart contracts, WebAssembly runtimes have added gas metering, i.e. limiting
the number of instructions that a module can execute before it is interrupted. It achieves a
limitation of the CPU but the technique is unsuitable for serverless since the typical model is
to pay by execution time rather than instructions and it adds book-keeping overheads.

Our executor is stateless without exception, that is, each function is executed in a new
Instance . Some functions, however, may wish to cache data from an external service in
memory to improve latency. A fully stateless system does not allow for such optimizations,
while caching Instance s rather than Module s and invoking them repeatedly would.

At the end of Chapter 3, we concluded that neither of the threading models we examined was
strictly superior. If a priori knowledge exists about the type of workload, then we may wish to
run multiple Invoker s with different threading models. If the workload type is annotated on
the function, the load balancer could dispatch to the most appropriate Invoker and improve
performance.

While we have seen great leaps in performance on a Raspberry Pi, the cold start times of just
the executor are still beyond 100 ms. This is on the same order of magnitude that current FaaS
offerings perform on, although on more powerful hardware. Regardless, it may not be fast
enough for latency-critical applications at the edge. Therefore, other techniques like those
explored in the related work may need to be implemented in conjunction with our approach to
bring the startup latency further down.

85

List of Figures

2.1 A generalized serverless architecture based on OpenWhisk, OpenFaaS and Open-
Lambda. 8

3.1 The invocation flow of an action in Apache OpenWhisk, based on the source code
and documentation [Dev19]. Potentially many Invokers can exist on different hosts
in this setup. 24

3.2 Invocation flow of a Wasm action in our modified Apache OpenWhisk. The
Invoker injects the code into the executor which creates a Wasm module ready for
execution. It then instructs the executor to invoke the module with the parameters
it passes. The result is passed back to the Invoker. Again, a deployer can define
whether one or more Invokers exist. 29

3.3 There are two phases in the action development. Our ow-wasm-action library
provides the abstraction to read the parameters the runtime has passed and to write
the return value. To that end, it uses serde_json , a (de)serialization library to read
and write the JSON objects. Afterwards, wasm-opt runs an optimization pass on
the produced WebAssembly, since not all runtimes do so themselves. Depending on
what runtime is compiled into the executor, the corresponding precompiler needs
to be used. For wasmtime , we have written the small ow-wasmtime-precompiler
program that precompiles the Wasm code into a format ready for execution, while
wamrc and wasmer compile can be used for the others. Finally, the resulting
precompiled binary is zipped which reduces the transmission size and instructs the
OpenWhisk cli to treat it as binary data. The zip file is then ready to be uploaded
to OpenWhisk. 39

87

3.4 Overview of the executor architecture. init decodes the received bytes using
base64 and unzips the result. From there, they are deserialized back into a Module
instance, in the case of wasmtime and wasmer . The module and capabilities are
then stored in the HashMap. When a run request comes in, the module and
capabilities are looked up. The capabilities are transformed to a WASI context,
which is used to instantiate an instance, together with the module. The parameters
for this run request are serialized to JSON and written into the instance’s memory.
Calling the main function in turn invokes the actual developer-provided handler
function. The read result is returned to OpenWhisk. A destroy request simply
translates to a remove operation on the HashMap. Note that this figure is accurate
for wasmtime and wasmer , but not entirely for wamr . The latter runtime’s module
creation is slightly different, as explained above. 41

3.5 Executing blocking Wasm workloads under the async-std default model with 8
threads, compared with running each in a thread from a pool. 44

3.6 The average request duration and the average amount of requests finished per
second under the default and thread pool execution model, sampled over 50 runs. 45

3.7 An example of a container’s lifecycle when OpenWhisk’s concurrency limit is set
to a value greater one for that action. Note that a container is only represented in-
memory by its module and instances, which is why there is no explicit »container«
label in the figure. The container is initialized with a module by OpenWhisk’s call
to /init . Every /run request to the same container id spawns a new instance
of a WebAssembly module. In particular, two concurrent requests to /run can
be executed concurrently by the same container. In that case, the instances are
instantiated from the same module. The instances are the actual »containers« here,
since they are the ones who are isolated from each other and the host. They are
short-lived and never reused to guarantee that isolation, in other words, there is a
one-to-one relationship between /run requests and instances. The Wasm module
will stay in memory until OpenWhisk’s explicit call to /destroy , which occurs
after a container has been idle for some threshold time. 47

4.1 The two time measurements we use to evaluate the system’s performance. . . . 53
4.2 The cold start time with a CPU-bound workload on a Raspberry Pi with both

Docker and Wasm-based container runtimes. Note that the scale is logarithmic
rather than linear. 56

4.3 The cold start time with a CPU-bound workload on a server machine with both
Docker and Wasm-based container runtimes. The Docker numbers fall between
869 ms and 2873 ms, while the numbers for WebAssembly executors range from 47
ms to 180 ms. 57

4.4 The cold start time with a CPU-bound workload on the Raspberry Pi only for the
Wasm executors and with a confidence interval of 95%. 58

4.5 The throughput in requests per second with an equal amount of I/O- and CPU-
bound workload on a Raspberry Pi and a server machine with both Docker and
Wasm-based container runtimes. 59

88

4.6 The throughput with an I/O-bound workload on a server machine with both Docker
and Wasm-based container runtimes. The y-axis shows the throughput in requests
per second, while the x-axis shows the number of concurrent requests, each of
which is repeated 50 times to generate a consistent load over a short period of time. 62

4.7 The throughput with a CPU-bound workload on a server machine with both Docker
and Wasm-based container runtimes. The y-axis shows the throughput in requests
per second, while the x-axis shows the number of concurrent requests, each of
which is repeated 50 times to generate a consistent load over a short period of time. 63

4.8 The ECDF for the execution of a WebAssembly module calculating prime numbers
executed in the wasmtime executor and JavaScript run in the openwhisk/action-nodejs-v14
image. The y-axis shows the proportion of total requests that were finished with
the latency given on the x-axis, or less. 64

4.9 The ECDF of our experiment, designed based on serverless usage data from Mi-
crosoft Azure. The y-axis shows the proportion of total requests that were finished
with the latency given on the x-axis, or less. 66

4.10 The average memory usage of Docker and WebAssembly containers given different
module sizes. 70

89

List of Tables

3.1 WebAssembly runtime feature overview. 23

4.1 The average throughput that the respective WebAssembly executors achieve over
to Docker, in the mixed workload scenario. 60

4.2 Size of the hashmodulewhen compiled to wasm32-wasi and x86_64-unknown-linux-musl
targets respectively. To provide three different container sizes we use release mode
with LTO and without as well as debug mode. The relative size increase over the
release with LTO are also given. 69

4.3 The ratio of memory usage for the different module sizes in WebAssembly executors
compared to the Docker container runtime. 71

91

List of Listings

1 Themain function of ourWebAssembly executor. The #[cfg(feature = " ...")]
macros allow us to define multiple runtimes while deciding at compile-time
which of them to enable. Thus, we can build three separate binaries, with each
only containing the code necessary for its runtime. 31

2 The WasmRuntime abstraction that each of our Wasm runtime wrappers imple-
ments. Note the previously mentioned Clone trait that is required for using
a WasmRuntime object as tide state. This is required here through the trait
bound, which means the type implementing this trait needs to also implement
Clone . 35

3 A simple add action in Rust that uses a macro from ow-wasm-action to pass
the received json to the handler and return the Result back to the runtime. 38

93

References

[Asl+21] Mohammad S. Aslanpour et al. “Serverless Edge Computing: Vision and Chal-
lenges”. In: 2021 Australasian Computer Science Week Multiconference. ACSW
’21. Dunedin, New Zealand: Association for Computing Machinery, 2021. isbn:
9781450389563. doi: 10.1145/3437378.3444367. url: https://doi.org/10.1145/
3437378.3444367.

[BF19] Luciano Baresi and Danilo Filgueira Mendonça. “Towards a Serverless Platform for
Edge Computing”. In: 2019 IEEE International Conference on Fog Computing (ICFC).
2019, pp. 1–10. doi: 10.1109/ICFC.2019.00008.

[Cas+19] Paul C. Castro et al. “The server is dead, long live the server: Rise of Serverless
Computing, Overview of Current State and Future Trends in Research and Indus-
try”. In: CoRR abs/1906.02888 (2019). arXiv: 1906.02888. url: http://arxiv.org/
abs/1906.02888.

[Cow+98] Crispin Cowan et al. “StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks”. In: Proc. 7th USENIX Security Symposium. 1998.

[Eis+21a] S. Eismann et al. “Serverless Applications: Why,When, and How?” In: IEEE Software
38.1 (2021), pp. 32–39. doi: 10.1109/MS.2020.3023302.

[Eis+21b] Simon Eismann et al. A Review of Serverless Use Cases and their Characteristics.
2021. arXiv: 2008.11110 [cs.SE].

[Fox+17] Geoffrey C. Fox et al. “Status of Serverless Computing and Function-as-a-
Service(FaaS) in Industry and Research”. In: CoRR abs/1708.08028 (2017). arXiv:
1708.08028. url: http://arxiv.org/abs/1708.08028.

[Haa+17] Andreas Haas et al. “Bringing the Web up to Speed with WebAssembly”. In: Pro-
ceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI 2017. Barcelona, Spain: Association for Computing Ma-
chinery, 2017, pp. 185–200. isbn: 9781450349888. doi: 10.1145/3062341.3062363.
url: https://doi.org/10.1145/3062341.3062363.

[HR19] Adam Hall and Umakishore Ramachandran. “An Execution Model for Serverless
Functions at the Edge”. In: Proceedings of the International Conference on Internet
of Things Design and Implementation. IoTDI ’19. Montreal, Quebec, Canada: As-
sociation for Computing Machinery, 2019, pp. 225–236. isbn: 9781450362832. doi:
10.1145/3302505.3310084. url: https://doi.org/10.1145/3302505.3310084.

95

https://doi.org/10.1145/3437378.3444367
https://doi.org/10.1145/3437378.3444367
https://doi.org/10.1145/3437378.3444367
https://doi.org/10.1109/ICFC.2019.00008
https://arxiv.org/abs/1906.02888
http://arxiv.org/abs/1906.02888
http://arxiv.org/abs/1906.02888
https://doi.org/10.1109/MS.2020.3023302
https://arxiv.org/abs/2008.11110
https://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3302505.3310084
https://doi.org/10.1145/3302505.3310084

[HLL12] Bai-Ruei Huang, Chang Hong Lin, and Chia-Han Lee. “Mobile augmented reality
based on cloud computing”. In: Anti-counterfeiting, Security, and Identification. 2012,
pp. 1–5. doi: 10.1109/ICASID.2012.6325354.

[Jan+19] Abhinav Jangda et al. “Not So Fast: Analyzing the Performance of WebAssembly
vs. Native Code”. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19).
Renton, WA: USENIX Association, 2019-07, pp. 107–120. isbn: 978-1-939133-03-8.
url: https://www.usenix.org/conference/atc19/presentation/jangda.

[LKP20] Daniel Lehmann, Johannes Kinder, and Michael Pradel. “Everything Old is New
Again: Binary Security of WebAssembly”. In: 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 2020-08, pp. 217–234. isbn: 978-1-
939133-17-5. url: https://www.usenix.org/conference/usenixsecurity20/
presentation/lehmann.

[Lei+19] Philipp Leitner et al. “A mixed-method empirical study of Function-as-a-Service
software development in industrial practice”. In: Journal of Systems and Software
149 (2019-03-01), pp. 340–359. issn: 0164-1212. doi: https://doi.org/10.1016/
j.jss.2018.12.013. url: https://www.sciencedirect.com/science/article/
pii/S0164121218302735.

[LG19] Ping-Min Lin and Alex Glikson. “Mitigating Cold Starts in Serverless Platforms:
A Pool-Based Approach”. In: CoRR abs/1903.12221 (2019). arXiv: 1903.12221. url:
http://arxiv.org/abs/1903.12221.

[Man+18] J. Manner et al. “Cold Start Influencing Factors in Function as a Service”. In: 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion
(UCC Companion). 2018, pp. 181–188. doi: 10.1109/UCC-Companion.2018.00054.

[MB17] G. McGrath and P. R. Brenner. “Serverless Computing: Design, Implementation,
and Performance”. In: 2017 IEEE 37th International Conference on Distributed Com-
puting Systems Workshops (ICDCSW). 2017, pp. 405–410. doi: 10.1109/ICDCSW.
2017.36.

[Men20] P. Mendki. “Evaluating Webassembly Enabled Serverless Approach for Edge
Computing”. In: 2020 IEEE Cloud Summit. 2020, pp. 161–166. doi: 10 . 1109 /
IEEECloudSummit48914.2020.00031.

[Moh+19] Anup Mohan et al. “Agile Cold Starts for Scalable Serverless”. In: 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19). Renton, WA: USENIX
Association, 2019-07. url: https://www.usenix.org/conference/hotcloud19/
presentation/mohan.

[Nas+17] S. Nastic et al. “A Serverless Real-Time Data Analytics Platform for Edge Comput-
ing”. In: IEEE Internet Computing 21.4 (2017), pp. 64–71. doi: 10.1109/MIC.2017.
2911430.

96

https://doi.org/10.1109/ICASID.2012.6325354
https://www.usenix.org/conference/atc19/presentation/jangda
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/https://doi.org/10.1016/j.jss.2018.12.013
https://doi.org/https://doi.org/10.1016/j.jss.2018.12.013
https://www.sciencedirect.com/science/article/pii/S0164121218302735
https://www.sciencedirect.com/science/article/pii/S0164121218302735
https://arxiv.org/abs/1903.12221
http://arxiv.org/abs/1903.12221
https://doi.org/10.1109/UCC-Companion.2018.00054
https://doi.org/10.1109/ICDCSW.2017.36
https://doi.org/10.1109/ICDCSW.2017.36
https://doi.org/10.1109/IEEECloudSummit48914.2020.00031
https://doi.org/10.1109/IEEECloudSummit48914.2020.00031
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/MIC.2017.2911430

[ND18] Stefan Nastic and Schahram Dustdar. “Towards Deviceless Edge Computing: Chal-
lenges, Design Aspects, and Models for Serverless Paradigm at the Edge”. In: The
Essence of Software Engineering. Ed. by Volker Gruhn and Rüdiger Striemer. Springer,
2018, pp. 121–136. isbn: 978-3-319-73897-0. doi: 10.1007/978-3-319-73897-0_8.
url: https://doi.org/10.1007/978-3-319-73897-0_8.

[Rau+19] Thomas Rausch et al. “Towards a Serverless Platform for Edge AI”. In: 2nd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 19). Renton, WA: USENIX
Association, 2019-07. url: https://www.usenix.org/conference/hotedge19/
presentation/rausch.

[Rau+20] Thomas Rausch et al. “Synthesizing Plausible Infrastructure Configurations for
Evaluating Edge Computing Systems”. In: 3rd USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 20). USENIX Association, 2020-06. url: https://www.
usenix.org/conference/hotedge20/presentation/rausch.

[Sha+20] Mohammad Shahrad et al. “Serverless in the Wild: Characterizing and Optimiz-
ing the Serverless Workload at a Large Cloud Provider”. In: 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association, 2020-07, pp. 205–218.
isbn: 978-1-939133-14-4. url: https://www.usenix.org/conference/atc20/
presentation/shahrad.

[SD16] W. Shi and S. Dustdar. “The Promise of Edge Computing”. In: Computer 49.5 (2016),
pp. 78–81. doi: 10.1109/MC.2016.145.

[SP20] Simon Shillaker and Peter Pietzuch. “Faasm: Lightweight Isolation for Efficient
Stateful Serverless Computing”. In: 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 2020-07, pp. 419–433. isbn: 978-1-939133-14-
4. url: https://www.usenix.org/conference/atc20/presentation/shillaker.

[Wan+18] Liang Wang et al. “Peeking Behind the Curtains of Serverless Platforms”. In:
2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston, MA: USENIX
Association, 2018-07, pp. 133–146. isbn: ISBN 978-1-939133-01-4. url: https://
www.usenix.org/conference/atc18/presentation/wang-liang.

97

https://doi.org/10.1007/978-3-319-73897-0_8
https://doi.org/10.1007/978-3-319-73897-0_8
https://www.usenix.org/conference/hotedge19/presentation/rausch
https://www.usenix.org/conference/hotedge19/presentation/rausch
https://www.usenix.org/conference/hotedge20/presentation/rausch
https://www.usenix.org/conference/hotedge20/presentation/rausch
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1109/MC.2016.145
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/atc18/presentation/wang-liang

Online Resources

[All21] Bytecode Alliance. Cranelift Code Generator. 2021-04-23. url: https://github.
com/bytecodealliance/wasmtime/tree/main/cranelift (visited on 2021-04-27).

[Aut21] The Kubernetes Authors. Kubernetes. 2021-03-04. url: https://kubernetes.io/
(visited on 2021-03-04).

[Cla19] Lin Clark. Standardizing WASI: A system interface to run WebAssembly outside the
web. 2019-03-27. url: https://hacks.mozilla.org/2019/03/standardizing-
wasi-a-webassembly-system-interface/ (visited on 2021-02-14).

[Clo21] Cloudflare. How Workers works. 2021-02-12. url: https : / / developers .
cloudflare.com/workers/learning/how-workers-works (visited on 2021-02-18).

[Cui18] Yan Cui. I’m afraid you’re thinking about AWS Lambda cold starts all wrong.
2018-01-15. url: https://hackernoon.com/im-afraid-you-re-thinking-about-
aws-lambda-cold-starts-all-wrong-7d907f278a4f (visited on 2021-04-14).

[Dei21] Deislabs. Krustlet. 2021-03-04. url: https://github.com/deislabs/krustlet
(visited on 2021-03-04).

[Den19] Frank Denis. Memory management in WebAssembly: guide for C and Rust program-
mers. 2019-02-07. url: https://www.fastly.com/blog/webassembly-memory-
management-guide-for-c-rust-programmers (visited on 2021-04-25).

[Dev19] Apache OpenWhisk Developers. OpenWhisk system overview.
2019-08-14. url: https : / / github . com / apache / openwhisk / blob /
b5b88ece0ae08c87948796b38ab18e55ab4b70a7 / docs / about . md (visited on
2021-02-19).

[Dev20] Apache OpenWhisk Developers. OpenWhisk Deploy Kube: Configuration Choices.
2020-08-19. url: https://github.com/apache/openwhisk-deploy-kube/blob/
281c0ace1dbede3cbd18b0aecf0775fb3dff4bdb / docs / configurationChoices .
md (visited on 2021-03-04).

[Dev21a] Ethereum Developers. Ethereum WebAssembly (ewasm). 2021-05-09. url: https:
//ewasm.readthedocs.io/en/mkdocs/ (visited on 2021-05-09).

[Dev21b] Rust Language Developers. Asynchronous Programming in Rust. 2021-04-27. url:
https://rust-lang.github.io/async-book/01_getting_started/02_why_
async.html (visited on 2021-04-27).

99

https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://kubernetes.io/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://developers.cloudflare.com/workers/learning/how-workers-works
https://developers.cloudflare.com/workers/learning/how-workers-works
https://hackernoon.com/im-afraid-you-re-thinking-about-aws-lambda-cold-starts-all-wrong-7d907f278a4f
https://hackernoon.com/im-afraid-you-re-thinking-about-aws-lambda-cold-starts-all-wrong-7d907f278a4f
https://github.com/deislabs/krustlet
https://www.fastly.com/blog/webassembly-memory-management-guide-for-c-rust-programmers
https://www.fastly.com/blog/webassembly-memory-management-guide-for-c-rust-programmers
https://github.com/apache/openwhisk/blob/b5b88ece0ae08c87948796b38ab18e55ab4b70a7/docs/about.md
https://github.com/apache/openwhisk/blob/b5b88ece0ae08c87948796b38ab18e55ab4b70a7/docs/about.md
https://github.com/apache/openwhisk-deploy-kube/blob/281c0ace1dbede3cbd18b0aecf0775fb3dff4bdb/docs/configurationChoices.md
https://github.com/apache/openwhisk-deploy-kube/blob/281c0ace1dbede3cbd18b0aecf0775fb3dff4bdb/docs/configurationChoices.md
https://github.com/apache/openwhisk-deploy-kube/blob/281c0ace1dbede3cbd18b0aecf0775fb3dff4bdb/docs/configurationChoices.md
https://ewasm.readthedocs.io/en/mkdocs/
https://ewasm.readthedocs.io/en/mkdocs/
https://rust-lang.github.io/async-book/01_getting_started/02_why_async.html
https://rust-lang.github.io/async-book/01_getting_started/02_why_async.html

[Far+19] Manzoor Farid et al. Edge Computing for Serverless Applications. 2019-07-08. url:
https : / / www . ibm . com / cloud / blog / edge - computing - for - serverless -
applications (visited on 2021-04-25).

[fas19] fastly. Announcing Lucet: Fastly’s native WebAssembly compiler and runtime.
2019-03-29. url: https://www.fastly.com/blog/announcing-lucet-fastly-
native-webassembly-compiler-runtime (visited on 2020-10-25).

[HWZ14] David Herman, Luke Wagner, and Alon Zakai. asm.js Working Draft. 2014-08-18.
url: http://asmjs.org/spec/latest/ (visited on 2021-02-14).

[Hic20] Pat Hickey. How Lucet and Wasmtime make a stronger compiler, together. 2020-03-03.
url: https://www.fastly.com/blog/how-lucet-wasmtime-make-stronger-
compiler-together (visited on 2021-05-07).

[Hyk19] Solomon Hykes. WASM+WASI Tweet. 2019-03-27. url: https://twitter.com/
solomonstre/status/1111004913222324225 (visited on 2020-10-25).

[IBM21] IBM. Originless responses. 2021-04-27. url: https://cloud.ibm.com/docs/cis?
topic=cis-edge-functions-use-cases#originless-responses (visited on
2021-04-27).

[Reh19] Taavi Rehemägi. State of Lambda functions in 2019 by Dashbird. 2019-06-20. url:
https://dashbird.io/blog/state-of-lambda-functions-2019/#ok-pretty-
cool-but-what-about-their-runtime (visited on 2021-04-24).

[Shi21] Mikhail Shilkov. When Does Cold Start Happen on AWS Lambda? 2021-01-05. url:
https://mikhail.io/serverless/coldstarts/aws/intervals/ (visited on
2021-03-08).

[Tea21] WasmCloud Team. Wasmcloud Actor Interfaces. 2021-03-05. url: https://github.
com/wasmCloud/actor-interfaces (visited on 2021-03-05).

[Thö17] Markus Thömmes. Squeezing the milliseconds: How to make serverless platforms
blazing fast! 2017-04-20. url: https : / / medium . com / openwhisk / squeezing -
the - milliseconds - how - to - make - serverless - platforms - blazing - fast -
aea0e9951bd0 (visited on 2021-05-04).

[TCW21] Aaron Turon, Wonwoo Choi, and Yoshua Wuyts. Tide. 2021-02-26. url: https:
//crates.io/crates/tide (visited on 2021-02-26).

[W3C20] W3C. WebAssembly Website. 2020-10-25. url: https://webassembly.org/ (visited
on 2020-10-25).

[Win20] Andy Wingo. 2020-10-15. url: http://wingolog.org/archives/2020/10/15/on-
binary-security-of-webassembly (visited on 2021-04-26).

[ZN13] Alon Zakai and Robert Nyman. Gap between asm.js and native performance gets
even narrower with float32 optimizations. 2013-12-20. url: https://hacks.mozilla.
org/2013/12/gap-between-asm-js-and-native-performance-gets-even-
narrower-with-float32-optimizations/ (visited on 2021-02-14).

100

https://www.ibm.com/cloud/blog/edge-computing-for-serverless-applications
https://www.ibm.com/cloud/blog/edge-computing-for-serverless-applications
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
http://asmjs.org/spec/latest/
https://www.fastly.com/blog/how-lucet-wasmtime-make-stronger-compiler-together
https://www.fastly.com/blog/how-lucet-wasmtime-make-stronger-compiler-together
https://twitter.com/solomonstre/status/1111004913222324225
https://twitter.com/solomonstre/status/1111004913222324225
https://cloud.ibm.com/docs/cis?topic=cis-edge-functions-use-cases#originless-responses
https://cloud.ibm.com/docs/cis?topic=cis-edge-functions-use-cases#originless-responses
https://dashbird.io/blog/state-of-lambda-functions-2019/#ok-pretty-cool-but-what-about-their-runtime
https://dashbird.io/blog/state-of-lambda-functions-2019/#ok-pretty-cool-but-what-about-their-runtime
https://mikhail.io/serverless/coldstarts/aws/intervals/
https://github.com/wasmCloud/actor-interfaces
https://github.com/wasmCloud/actor-interfaces
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://crates.io/crates/tide
https://crates.io/crates/tide
https://webassembly.org/
http://wingolog.org/archives/2020/10/15/on-binary-security-of-webassembly
http://wingolog.org/archives/2020/10/15/on-binary-security-of-webassembly
https://hacks.mozilla.org/2013/12/gap-between-asm-js-and-native-performance-gets-even-narrower-with-float32-optimizations/
https://hacks.mozilla.org/2013/12/gap-between-asm-js-and-native-performance-gets-even-narrower-with-float32-optimizations/
https://hacks.mozilla.org/2013/12/gap-between-asm-js-and-native-performance-gets-even-narrower-with-float32-optimizations/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the Work
	Terminology
	Contributions

	Structure of the Work

	Background
	Serverless Computing
	Function-as-a-Service
	Serverless Architecture
	Cold Start
	Serverless Edge Computing
	Serverless Workload

	WebAssembly
	Performance
	Security
	System Interface
	Execution

	Design
	Core Approach
	Requirements
	Apache OpenWhisk

	WebAssembly Runtimes
	Wasmtime
	Lucet
	Wasmer
	WASM3
	WebAssembly Micro Runtime

	WebAssembly in OpenWhisk
	OpenWhisk's Anatomy
	OpenWhisk on Kubernetes
	Executing WebAssembly with OpenWhisk
	Krustlet: The WebAssembly Kubelet
	An OpenWhisk-WebAssembly Executor

	Executor Implementation
	Fast Cold Starts
	Warm Starts
	The WasmRuntime Abstraction
	Enabling Concurrency
	Implementation Alternatives

	Evaluation
	Methodology
	Goals
	Workload Types
	Hardware Classes
	Setup
	Deployment

	Cold Start
	Throughput
	Mixed Workload
	I/O-bound Workload
	CPU-bound Workload
	Realistic Workload

	Resource Usage

	Related Work
	Incremental Approaches
	Pre-Warming
	Pre-Creation
	Prediction

	WebAssembly in Serverless
	Execution in node.js
	Cloudflare Workers
	Fastly's Lucet
	Faasm

	WebAssembly in Smart Contracts

	Conclusion
	Research Questions
	Open Challenges & Future Work

	List of Figures
	List of Tables
	References
	Online Resources

